Abstract:Accurate and robust classification of diseases is important for proper diagnosis and treatment. However, medical datasets often face challenges related to limited sample sizes and inherent imbalanced distributions, due to difficulties in data collection and variations in disease prevalence across different types. In this paper, we introduce an Iterative Online Image Synthesis (IOIS) framework to address the class imbalance problem in medical image classification. Our framework incorporates two key modules, namely Online Image Synthesis (OIS) and Accuracy Adaptive Sampling (AAS), which collectively target the imbalance classification issue at both the instance level and the class level. The OIS module alleviates the data insufficiency problem by generating representative samples tailored for online training of the classifier. On the other hand, the AAS module dynamically balances the synthesized samples among various classes, targeting those with low training accuracy. To evaluate the effectiveness of our proposed method in addressing imbalanced classification, we conduct experiments on the HAM10000 and APTOS datasets. The results obtained demonstrate the superiority of our approach over state-of-the-art methods as well as the effectiveness of each component. The source code will be released upon acceptance.
Abstract:Optical Coherence Tomography Angiography (OCTA) has become increasingly vital in the clinical screening of fundus diseases due to its ability to capture accurate 3D imaging of blood vessels in a non-contact scanning manner. However, the acquisition of OCTA images remains challenging due to the requirement of exclusive sensors and expensive devices. In this paper, we propose a novel framework, TransPro, that translates 3D Optical Coherence Tomography (OCT) images into exclusive 3D OCTA images using an image translation pattern. Our main objective is to address two issues in existing image translation baselines, namely, the aimlessness in the translation process and incompleteness of the translated object. The former refers to the overall quality of the translated OCTA images being satisfactory, but the retinal vascular quality being low. The latter refers to incomplete objects in translated OCTA images due to the lack of global contexts. TransPro merges a 2D retinal vascular segmentation model and a 2D OCTA image translation model into a 3D image translation baseline for the 2D projection map projected by the translated OCTA images. The 2D retinal vascular segmentation model can improve attention to the retinal vascular, while the 2D OCTA image translation model introduces beneficial heuristic contextual information. Extensive experimental results on two challenging datasets demonstrate that TransPro can consistently outperform existing approaches with minimal computational overhead during training and none during testing.