Abstract:Simultaneous generation models write generation results while reading streaming inputs, necessitating a policy-maker to determine the appropriate output timing. Existing simultaneous generation methods generally adopt the traditional encoder-decoder architecture and learn the generation and policy-making capabilities through complex dynamic programming techniques. Although LLMs excel at text generation, they face challenges in taking on the role of policy-makers through traditional training methods, limiting their exploration in simultaneous generation. To overcome these limitations, we propose a novel LLM-driven Simultaneous Generation (LSG) framework, which allows the off-the-shelf LLM to decide the generation timing and produce output concurrently. Specifically, LSG selects the generation policy that minimizes latency as the baseline policy. Referring to the baseline policy, LSG enables the LLM to devise an improved generation policy that better balances latency and generation quality, and writes generation results accordingly. Experiments on simultaneous translation and streaming automatic speech recognition tasks show that our method can achieve state-of-the-art performance utilizing the open-source LLMs and demonstrate practicality in real-world scenarios.
Abstract:Large language models (LLMs), with their powerful generative capabilities and vast knowledge, empower various tasks in everyday life. However, these abilities are primarily concentrated in high-resource languages, leaving low-resource languages with weaker generative capabilities and relatively limited knowledge. Enhancing the multilingual capabilities of LLMs is therefore crucial for serving over 100 linguistic communities worldwide. An intuitive approach to enhance the multilingual capabilities would be to construct instruction data for various languages, but constructing instruction data for over 100 languages is prohibitively costly. In this paper, we introduce BayLing 2, which efficiently transfers generative capabilities and knowledge from high-resource languages to low-resource languages through language alignment. To achieve this, we constructed a dataset of 3.2 million instructions, comprising high-resource language instructions (Chinese and English) and cross-lingual instructions for 100+ languages and performed instruction tuning based on the dataset to facilitate the capability transfer between languages. Using Llama as the foundation model, we developed BayLing-2-7B, BayLing-2-13B, and BayLing-3-8B, and conducted a comprehensive evaluation of BayLing. For multilingual translation across 100+ languages, BayLing shows superior performance compared to open-source models of similar scale. For multilingual knowledge and understanding benchmarks, BayLing achieves significant improvements across over 20 low-resource languages, demonstrating its capability of effective knowledge transfer from high-resource to low-resource languages. Furthermore, results on English benchmarks indicate that BayLing maintains high performance in highresource languages while enhancing the performance in low-resource languages. Demo, homepage, code and models of BayLing are available.
Abstract:Models like GPT-4o enable real-time interaction with large language models (LLMs) through speech, significantly enhancing user experience compared to traditional text-based interaction. However, there is still a lack of exploration on how to build speech interaction models based on open-source LLMs. To address this, we propose LLaMA-Omni, a novel model architecture designed for low-latency and high-quality speech interaction with LLMs. LLaMA-Omni integrates a pretrained speech encoder, a speech adaptor, an LLM, and a streaming speech decoder. It eliminates the need for speech transcription, and can simultaneously generate text and speech responses directly from speech instructions with extremely low latency. We build our model based on the latest Llama-3.1-8B-Instruct model. To align the model with speech interaction scenarios, we construct a dataset named InstructS2S-200K, which includes 200K speech instructions and corresponding speech responses. Experimental results show that compared to previous speech-language models, LLaMA-Omni provides better responses in both content and style, with a response latency as low as 226ms. Additionally, training LLaMA-Omni takes less than 3 days on just 4 GPUs, paving the way for the efficient development of speech-language models in the future.
Abstract:Simultaneous Machine Translation (SiMT) generates target translations while reading the source sentence. It relies on a policy to determine the optimal timing for reading sentences and generating translations. Existing SiMT methods generally adopt the traditional Transformer architecture, which concurrently determines the policy and generates translations. While they excel at determining policies, their translation performance is suboptimal. Conversely, Large Language Models (LLMs), trained on extensive corpora, possess superior generation capabilities, but it is difficult for them to acquire translation policy through the training methods of SiMT. Therefore, we introduce Agent-SiMT, a framework combining the strengths of LLMs and traditional SiMT methods. Agent-SiMT contains the policy-decision agent and the translation agent. The policy-decision agent is managed by a SiMT model, which determines the translation policy using partial source sentence and translation. The translation agent, leveraging an LLM, generates translation based on the partial source sentence. The two agents collaborate to accomplish SiMT. Experiments demonstrate that Agent-SiMT attains state-of-the-art performance.
Abstract:Simultaneous translation models play a crucial role in facilitating communication. However, existing research primarily focuses on text-to-text or speech-to-text models, necessitating additional cascade components to achieve speech-to-speech translation. These pipeline methods suffer from error propagation and accumulate delays in each cascade component, resulting in reduced synchronization between the speaker and listener. To overcome these challenges, we propose a novel non-autoregressive generation framework for simultaneous speech translation (NAST-S2X), which integrates speech-to-text and speech-to-speech tasks into a unified end-to-end framework. We develop a non-autoregressive decoder capable of concurrently generating multiple text or acoustic unit tokens upon receiving fixed-length speech chunks. The decoder can generate blank or repeated tokens and employ CTC decoding to dynamically adjust its latency. Experimental results show that NAST-S2X outperforms state-of-the-art models in both speech-to-text and speech-to-speech tasks. It achieves high-quality simultaneous interpretation within a delay of less than 3 seconds and provides a 28 times decoding speedup in offline generation.
Abstract:Simultaneous Machine Translation (SiMT) generates translation while reading source tokens, essentially producing the target prefix based on the source prefix. To achieve good performance, it leverages the relationship between source and target prefixes to exact a policy to guide the generation of translations. Although existing SiMT methods primarily focus on the Encoder-Decoder architecture, we explore the potential of Decoder-only architecture, owing to its superior performance in various tasks and its inherent compatibility with SiMT. However, directly applying the Decoder-only architecture to SiMT poses challenges in terms of training and inference. To alleviate the above problems, we propose the first Decoder-only SiMT model, named Decoder-only Streaming Transformer (DST). Specifically, DST separately encodes the positions of the source and target prefixes, ensuring that the position of the target prefix remains unaffected by the expansion of the source prefix. Furthermore, we propose a Streaming Self-Attention (SSA) mechanism tailored for the Decoder-only architecture. It is capable of obtaining translation policy by assessing the sufficiency of input source information and integrating with the soft-attention mechanism to generate translations. Experiments demonstrate that our approach achieves state-of-the-art performance on three translation tasks.
Abstract:Simultaneous speech-to-speech translation (Simul-S2ST, a.k.a streaming speech translation) outputs target speech while receiving streaming speech inputs, which is critical for real-time communication. Beyond accomplishing translation between speech, Simul-S2ST requires a policy to control the model to generate corresponding target speech at the opportune moment within speech inputs, thereby posing a double challenge of translation and policy. In this paper, we propose StreamSpeech, a direct Simul-S2ST model that jointly learns translation and simultaneous policy in a unified framework of multi-task learning. Adhering to a multi-task learning approach, StreamSpeech can perform offline and simultaneous speech recognition, speech translation and speech synthesis via an "All-in-One" seamless model. Experiments on CVSS benchmark demonstrate that StreamSpeech achieves state-of-the-art performance in both offline S2ST and Simul-S2ST tasks. Besides, StreamSpeech is able to present high-quality intermediate results (i.e., ASR or translation results) during simultaneous translation process, offering a more comprehensive real-time communication experience.
Abstract:Simultaneous Machine Translation (SiMT) generates translations while reading the source sentence, necessitating a policy to determine the optimal timing for reading and generating words. Despite the remarkable performance achieved by Large Language Models (LLM) across various NLP tasks, existing SiMT methods predominantly focus on conventional transformers, employing a single model to concurrently determine the policy and generate the translations. However, given the complexity of SiMT, it is challenging to effectively address both tasks with a single model. Therefore, there is a need to decouple the SiMT task into policy-decision and translation sub-tasks. We propose SiLLM, which delegates the two sub-tasks to separate agents, thereby incorporating LLM into SiMT. The policy-decision agent is managed by a conventional SiMT model, responsible for determining the translation policy. The translation agent, leveraging the capabilities of LLM, generates translation using the partial source sentence. The two agents collaborate to accomplish SiMT. To facilitate the application of token-level policies determined by conventional SiMT models to LLM, we propose a word-level policy adapted for LLM. Experiments on two datasets demonstrate that, with a small amount of data for fine-tuning LLM, SiLLM attains state-of-the-art performance.
Abstract:Simultaneous machine translation (SiMT) generates translation while reading the whole source sentence. However, existing SiMT models are typically trained using the same reference disregarding the varying amounts of available source information at different latency. Training the model with ground-truth at low latency may introduce forced anticipations, whereas utilizing reference consistent with the source word order at high latency results in performance degradation. Consequently, it is crucial to train the SiMT model with appropriate reference that avoids forced anticipations during training while maintaining high quality. In this paper, we propose a novel method that provides tailored reference for the SiMT models trained at different latency by rephrasing the ground-truth. Specifically, we introduce the tailor, induced by reinforcement learning, to modify ground-truth to the tailored reference. The SiMT model is trained with the tailored reference and jointly optimized with the tailor to enhance performance. Importantly, our method is applicable to a wide range of current SiMT approaches. Experiments on three translation tasks demonstrate that our method achieves state-of-the-art performance in both fixed and adaptive policies.
Abstract:Simultaneous machine translation (SiMT) models are trained to strike a balance between latency and translation quality. However, training these models to achieve high quality while maintaining low latency often leads to a tendency for aggressive anticipation. We argue that such issue stems from the autoregressive architecture upon which most existing SiMT models are built. To address those issues, we propose non-autoregressive streaming Transformer (NAST) which comprises a unidirectional encoder and a non-autoregressive decoder with intra-chunk parallelism. We enable NAST to generate the blank token or repetitive tokens to adjust its READ/WRITE strategy flexibly, and train it to maximize the non-monotonic latent alignment with an alignment-based latency loss. Experiments on various SiMT benchmarks demonstrate that NAST outperforms previous strong autoregressive SiMT baselines.