Abstract:This report provides an initial look at partial results from the TREC 2024 Retrieval-Augmented Generation (RAG) Track. We have identified RAG evaluation as a barrier to continued progress in information access (and more broadly, natural language processing and artificial intelligence), and it is our hope that we can contribute to tackling the many challenges in this space. The central hypothesis we explore in this work is that the nugget evaluation methodology, originally developed for the TREC Question Answering Track in 2003, provides a solid foundation for evaluating RAG systems. As such, our efforts have focused on "refactoring" this methodology, specifically applying large language models to both automatically create nuggets and to automatically assign nuggets to system answers. We call this the AutoNuggetizer framework. Within the TREC setup, we are able to calibrate our fully automatic process against a manual process whereby nuggets are created by human assessors semi-manually and then assigned manually to system answers. Based on initial results across 21 topics from 45 runs, we observe a strong correlation between scores derived from a fully automatic nugget evaluation and a (mostly) manual nugget evaluation by human assessors. This suggests that our fully automatic evaluation process can be used to guide future iterations of RAG systems.
Abstract:The application of large language models to provide relevance assessments presents exciting opportunities to advance information retrieval, natural language processing, and beyond, but to date many unknowns remain. This paper reports on the results of a large-scale evaluation (the TREC 2024 RAG Track) where four different relevance assessment approaches were deployed in situ: the "standard" fully manual process that NIST has implemented for decades and three different alternatives that take advantage of LLMs to different extents using the open-source UMBRELA tool. This setup allows us to correlate system rankings induced by the different approaches to characterize tradeoffs between cost and quality. We find that in terms of nDCG@20, nDCG@100, and Recall@100, system rankings induced by automatically generated relevance assessments from UMBRELA correlate highly with those induced by fully manual assessments across a diverse set of 77 runs from 19 teams. Our results suggest that automatically generated UMBRELA judgments can replace fully manual judgments to accurately capture run-level effectiveness. Surprisingly, we find that LLM assistance does not appear to increase correlation with fully manual assessments, suggesting that costs associated with human-in-the-loop processes do not bring obvious tangible benefits. Overall, human assessors appear to be stricter than UMBRELA in applying relevance criteria. Our work validates the use of LLMs in academic TREC-style evaluations and provides the foundation for future studies.
Abstract:Copious amounts of relevance judgments are necessary for the effective training and accurate evaluation of retrieval systems. Conventionally, these judgments are made by human assessors, rendering this process expensive and laborious. A recent study by Thomas et al. from Microsoft Bing suggested that large language models (LLMs) can accurately perform the relevance assessment task and provide human-quality judgments, but unfortunately their study did not yield any reusable software artifacts. Our work presents UMBRELA (a recursive acronym that stands for UMbrela is the Bing RELevance Assessor), an open-source toolkit that reproduces the results of Thomas et al. using OpenAI's GPT-4o model and adds more nuance to the original paper. Across Deep Learning Tracks from TREC 2019 to 2023, we find that LLM-derived relevance judgments correlate highly with rankings generated by effective multi-stage retrieval systems. Our toolkit is designed to be easily extensible and can be integrated into existing multi-stage retrieval and evaluation pipelines, offering researchers a valuable resource for studying retrieval evaluation methodologies. UMBRELA will be used in the TREC 2024 RAG Track to aid in relevance assessments, and we envision our toolkit becoming a foundation for further innovation in the field. UMBRELA is available at https://github.com/castorini/umbrela.
Abstract:Recently, Multi-Modal(MM) Large Language Models(LLMs) have unlocked many complex use-cases that require MM understanding (e.g., image captioning or visual question answering) and MM generation (e.g., text-guided image generation or editing) capabilities. To further improve the output fidelity of MM-LLMs we introduce the model-agnostic UniRAG technique that adds relevant retrieved information to prompts as few-shot examples during inference. Unlike the common belief that Retrieval Augmentation (RA) mainly improves generation or understanding of uncommon entities, our evaluation results on the MSCOCO dataset with common entities show that both proprietary models like GPT4 and Gemini-Pro and smaller open-source models like Llava, LaVIT, and Emu2 significantly enhance their generation quality when their input prompts are augmented with relevant information retrieved by MM retrievers like UniIR models.
Abstract:Unjudged documents or holes in information retrieval benchmarks are considered non-relevant in evaluation, yielding no gains in measuring effectiveness. However, these missing judgments may inadvertently introduce biases into the evaluation as their prevalence for a retrieval model is heavily contingent on the pooling process. Thus, filling holes becomes crucial in ensuring reliable and accurate evaluation. Collecting human judgment for all documents is cumbersome and impractical. In this paper, we aim at leveraging large language models (LLMs) to automatically label unjudged documents. Our goal is to instruct an LLM using detailed instructions to assign fine-grained relevance judgments to holes. To this end, we systematically simulate scenarios with varying degrees of holes by randomly dropping relevant documents from the relevance judgment in TREC DL tracks. Our experiments reveal a strong correlation between our LLM-based method and ground-truth relevance judgments. Based on our simulation experiments conducted on three TREC DL datasets, in the extreme scenario of retaining only 10% of judgments, our method achieves a Kendall tau correlation of 0.87 and 0.92 on an average for Vicu\~na-7B and GPT-3.5 Turbo respectively.