Abstract:Real-time speech interaction, serving as a fundamental interface for human-machine collaboration, holds immense potential. However, current open-source models face limitations such as high costs in voice data collection, weakness in dynamic control, and limited intelligence. To address these challenges, this paper introduces Step-Audio, the first production-ready open-source solution. Key contributions include: 1) a 130B-parameter unified speech-text multi-modal model that achieves unified understanding and generation, with the Step-Audio-Chat version open-sourced; 2) a generative speech data engine that establishes an affordable voice cloning framework and produces the open-sourced lightweight Step-Audio-TTS-3B model through distillation; 3) an instruction-driven fine control system enabling dynamic adjustments across dialects, emotions, singing, and RAP; 4) an enhanced cognitive architecture augmented with tool calling and role-playing abilities to manage complex tasks effectively. Based on our new StepEval-Audio-360 evaluation benchmark, Step-Audio achieves state-of-the-art performance in human evaluations, especially in terms of instruction following. On open-source benchmarks like LLaMA Question, shows 9.3% average performance improvement, demonstrating our commitment to advancing the development of open-source multi-modal language technologies. Our code and models are available at https://github.com/stepfun-ai/Step-Audio.
Abstract:Imitation Learning (IL) is an effective learning paradigm exploiting the interactions between agents and environments. It does not require explicit reward signals and instead tries to recover desired policies using expert demonstrations. In general, IL methods can be categorized into Behavioral Cloning (BC) and Inverse Reinforcement Learning (IRL). In this work, a novel reward function based on probability density estimation is proposed for IRL, which can significantly reduce the complexity of existing IRL methods. Furthermore, we prove that the theoretically optimal policy derived from our reward function is identical to the expert policy as long as it is deterministic. Consequently, an IRL problem can be gracefully transformed into a probability density estimation problem. Based on the proposed reward function, we present a "watch-try-learn" style framework named Probability Density Estimation based Imitation Learning (PDEIL), which can work in both discrete and continuous action spaces. Finally, comprehensive experiments in the Gym environment show that PDEIL is much more efficient than existing algorithms in recovering rewards close to the ground truth.