Abstract:Due to the scarcity of fault samples and the complexity of non-linear and non-smooth characteristics data in hydroelectric units, most of the traditional hydroelectric unit fault localization methods are difficult to carry out accurate localization. To address these problems, a sparse autoencoder (SAE)-generative adversarial network (GAN)-wavelet noise reduction (WNR)- manifold-boosted deep learning (SG-WMBDL) based fault localization method for hydroelectric units is proposed. To overcome the data scarcity, a SAE is embedded into the GAN to generate more high-quality samples in the data generation module. Considering the signals involving non-linear and non-smooth characteristics, the improved WNR which combining both soft and hard thresholding and local linear embedding (LLE) are utilized to the data preprocessing module in order to reduce the noise and effectively capture the local features. In addition, to seek higher performance, the novel Adaptive Boost (AdaBoost) combined with multi deep learning is proposed to achieve accurate fault localization. The experimental results show that the SG-WMBDL can locate faults for hydroelectric units under a small number of fault samples with non-linear and non-smooth characteristics on higher precision and accuracy compared to other frontier methods, which verifies the effectiveness and practicality of the proposed method.
Abstract:Industrial equipment fault diagnosis often encounter challenges such as the scarcity of fault data, complex operating conditions, and varied types of failures. Signal analysis, data statistical learning, and conventional deep learning techniques face constraints under these conditions due to their substantial data requirements and the necessity for transfer learning to accommodate new failure modes. To effectively leverage information and extract the intrinsic characteristics of faults across different domains under limited sample conditions, this paper introduces a fault diagnosis approach employing Multi-Scale Graph Convolution Filtering (MSGCF). MSGCF enhances the traditional Graph Neural Network (GNN) framework by integrating both local and global information fusion modules within the graph convolution filter block. This advancement effectively mitigates the over-smoothing issue associated with excessive layering of graph convolutional layers while preserving a broad receptive field. It also reduces the risk of overfitting in few-shot diagnosis, thereby augmenting the model's representational capacity. Experiments on the University of Paderborn bearing dataset (PU) demonstrate that the MSGCF method proposed herein surpasses alternative approaches in accuracy, thereby offering valuable insights for industrial fault diagnosis in few-shot learning scenarios.
Abstract:Reconstruction-based methods have been commonly used for unsupervised anomaly detection, in which a normal image is reconstructed and compared with the given test image to detect and locate anomalies. Recently, diffusion models have shown promising applications for anomaly detection due to their powerful generative ability. However, these models lack strict mathematical support for normal image reconstruction and unexpectedly suffer from low reconstruction quality. To address these issues, this paper proposes a novel and highly-interpretable method named Masked Diffusion Posterior Sampling (MDPS). In MDPS, the problem of normal image reconstruction is mathematically modeled as multiple diffusion posterior sampling for normal images based on the devised masked noisy observation model and the diffusion-based normal image prior under Bayesian framework. Using a metric designed from pixel-level and perceptual-level perspectives, MDPS can effectively compute the difference map between each normal posterior sample and the given test image. Anomaly scores are obtained by averaging all difference maps for multiple posterior samples. Exhaustive experiments on MVTec and BTAD datasets demonstrate that MDPS can achieve state-of-the-art performance in normal image reconstruction quality as well as anomaly detection and localization.
Abstract:RGB-T semantic segmentation has been widely adopted to handle hard scenes with poor lighting conditions by fusing different modality features of RGB and thermal images. Existing methods try to find an optimal fusion feature for segmentation, resulting in sensitivity to modality noise, class-imbalance, and modality bias. To overcome the problems, this paper proposes a novel Variational Probabilistic Fusion Network (VPFNet), which regards fusion features as random variables and obtains robust segmentation by averaging segmentation results under multiple samples of fusion features. The random samples generation of fusion features in VPFNet is realized by a novel Variational Feature Fusion Module (VFFM) designed based on variation attention. To further avoid class-imbalance and modality bias, we employ the weighted cross-entropy loss and introduce prior information of illumination and category to control the proposed VFFM. Experimental results on MFNet and PST900 datasets demonstrate that the proposed VPFNet can achieve state-of-the-art segmentation performance.
Abstract:Unsupervised out-of-distribution (OOD) Detection aims to separate the samples falling outside the distribution of training data without label information. Among numerous branches, contrastive learning has shown its excellent capability of learning discriminative representation in OOD detection. However, for its limited vision, merely focusing on instance-level relationship between augmented samples, it lacks attention to the relationship between samples with same semantics. Based on the classic contrastive learning, we propose Cluster-aware Contrastive Learning (CCL) framework for unsupervised OOD detection, which considers both instance-level and semantic-level information. Specifically, we study a cooperation strategy of clustering and contrastive learning to effectively extract the latent semantics and design a cluster-aware contrastive loss function to enhance OOD discriminative ability. The loss function can simultaneously pay attention to the global and local relationships by treating both the cluster centers and the samples belonging to the same cluster as positive samples. We conducted sufficient experiments to verify the effectiveness of our framework and the model achieves significant improvement on various image benchmarks.
Abstract:The goal of a recommendation system is to model the relevance between each user and each item through the user-item interaction history, so that maximize the positive samples score and minimize negative samples. Currently, two popular loss functions are widely used to optimize recommender systems: the pointwise and the pairwise. Although these loss functions are widely used, however, there are two problems. (1) These traditional loss functions do not fit the goals of recommendation systems adequately and utilize prior knowledge information sufficiently. (2) The slow convergence speed of these traditional loss functions makes the practical application of various recommendation models difficult. To address these issues, we propose a novel loss function named Supervised Personalized Ranking (SPR) Based on Prior Knowledge. The proposed method improves the BPR loss by exploiting the prior knowledge on the interaction history of each user or item in the raw data. Unlike BPR, instead of constructing <user, positive item, negative item> triples, the proposed SPR constructs <user, similar user, positive item, negative item> quadruples. Although SPR is very simple, it is very effective. Extensive experiments show that our proposed SPR not only achieves better recommendation performance, but also significantly accelerates the convergence speed, resulting in a significant reduction in the required training time.