Abstract:Learned image compression (LIC) has demonstrated superior rate-distortion (R-D) performance compared to traditional codecs, but is challenged by training inefficiency that could incur more than two weeks to train a state-of-the-art model from scratch. Existing LIC methods overlook the slow convergence caused by compacting energy in learning nonlinear transforms. In this paper, we first reveal that such energy compaction consists of two components, i.e., feature decorrelation and uneven energy modulation. On such basis, we propose a linear auxiliary transform (AuxT) to disentangle energy compaction in training nonlinear transforms. The proposed AuxT obtains coarse approximation to achieve efficient energy compaction such that distribution fitting with the nonlinear transforms can be simplified to fine details. We then develop wavelet-based linear shortcuts (WLSs) for AuxT that leverages wavelet-based downsampling and orthogonal linear projection for feature decorrelation and subband-aware scaling for uneven energy modulation. AuxT is lightweight and plug-and-play to be integrated into diverse LIC models to address the slow convergence issue. Experimental results demonstrate that the proposed approach can accelerate training of LIC models by 2 times and simultaneously achieves an average 1\% BD-rate reduction. To our best knowledge, this is one of the first successful attempt that can significantly improve the convergence of LIC with comparable or superior rate-distortion performance. Code will be released at \url{https://github.com/qingshi9974/AuxT}
Abstract:Recent low-rank training methods, such as GaLore, have significantly reduced the memory required to optimize large language models (LLMs). However, these methods often suffer from time-consuming low-rank projection estimations. In particular, the singular value decomposition (SVD) in GaLore can consume more than 80\% of the total training time. To address this issue, we propose GaLore$+$, which uses cross-head low-rank projection to reduce the substantial time consumption in estimating low-rank projections for multi-head attention. In addition, we employ randomized subspace iteration to achieve fast SVD. To further enhance performance, we propose sparsely coded residuals to reduce the errors caused by low-rank approximation on the first- and second-order moments of the optimizers and weight updates. We evaluate GaLore$+$ on arithmetic reasoning and natural language generation datasets. Our experiments demonstrate that GaLore$+$ delivers superior performance while achieving approximately $4\times$ fine-tuning speed compared to vanilla GaLore.
Abstract:Image compression for machine and human vision (ICMH) has gained increasing attention in recent years. Existing ICMH methods are limited by high training and storage overheads due to heavy design of task-specific networks. To address this issue, in this paper, we develop a novel lightweight adapter-based tuning framework for ICMH, named Adapt-ICMH, that better balances task performance and bitrates with reduced overheads. We propose a spatial-frequency modulation adapter (SFMA) that simultaneously eliminates non-semantic redundancy with a spatial modulation adapter, and enhances task-relevant frequency components and suppresses task-irrelevant frequency components with a frequency modulation adapter. The proposed adapter is plug-and-play and compatible with almost all existing learned image compression models without compromising the performance of pre-trained models. Experiments demonstrate that Adapt-ICMH consistently outperforms existing ICMH frameworks on various machine vision tasks with fewer fine-tuned parameters and reduced computational complexity. Code will be released at https://github.com/qingshi9974/ECCV2024-AdpatICMH .
Abstract:Learned image compression (LIC) has gained traction as an effective solution for image storage and transmission in recent years. However, existing LIC methods are redundant in latent representation due to limitations in capturing anisotropic frequency components and preserving directional details. To overcome these challenges, we propose a novel frequency-aware transformer (FAT) block that for the first time achieves multiscale directional ananlysis for LIC. The FAT block comprises frequency-decomposition window attention (FDWA) modules to capture multiscale and directional frequency components of natural images. Additionally, we introduce frequency-modulation feed-forward network (FMFFN) to adaptively modulate different frequency components, improving rate-distortion performance. Furthermore, we present a transformer-based channel-wise autoregressive (T-CA) model that effectively exploits channel dependencies. Experiments show that our method achieves state-of-the-art rate-distortion performance compared to existing LIC methods, and evidently outperforms latest standardized codec VTM-12.1 by 14.5%, 15.1%, 13.0% in BD-rate on the Kodak, Tecnick, and CLIC datasets.
Abstract:JPEG images can be further compressed to enhance the storage and transmission of large-scale image datasets. Existing learned lossless compressors for RGB images cannot be well transferred to JPEG images due to the distinguishing distribution of DCT coefficients and raw pixels. In this paper, we propose a novel framework for learned lossless compression of JPEG images that achieves end-to-end optimized prediction of the distribution of decoded DCT coefficients. To enable learning in the frequency domain, DCT coefficients are partitioned into groups to utilize implicit local redundancy. An autoencoder-like architecture is designed based on the weight-shared blocks to realize entropy modeling of grouped DCT coefficients and independently compress the priors. We attempt to realize learned lossless compression of JPEG images in the frequency domain. Experimental results demonstrate that the proposed framework achieves superior or comparable performance in comparison to most recent lossless compressors with handcrafted context modeling for JPEG images.