Abstract:Recommender system is an essential part of online services, especially for e-commerce platform. Conversion Rate (CVR) prediction in RS plays a significant role in optimizing Gross Merchandise Volume (GMV) goal of e-commerce. However, CVR suffers from well-known Sample Selection Bias (SSB) and Data Sparsity (DS) problems. Although existing methods ESMM and ESM2 train with all impression samples over the entire space by modeling user behavior paths, SSB and DS problems still exist. In real practice, the online inference space are samples from previous stage of RS process, rather than the impression space modeled by existing methods. Moreover, existing methods solve the DS problem mainly by building behavior paths of their own specific scene, ignoring the behaviors in various scenes of e-commerce platform. In this paper, we propose Entire Space Learning Framework: Unbias Conversion Rate Prediction in Full Stages of Recommender System, solving SSB and DS problems by reformulating GMV goal in a novel manner. Specifically, we rebuild the CVR on the entire data space with samples from previous stage of RS process, unifying training and online inference space. Moreover, we explicitly introduce purchase samples from other scenes of e-commerce platform in model learning process. Online A/B test and offline experiments show the superiority of our framework. Our framework has been deployed in rank stage of Taobao recommendation, providing recommendation service for hundreds of millions of consumers everyday.
Abstract:Nowadays online users prefer to join multiple social media for the purpose of socialized online service. The problem \textit{anchor link prediction} is formalized to link user data with the common ground on user profile, content and network structure across social networks. Most of the traditional works concentrated on learning matching function with explicit or implicit features on observed user data. However, the low quality of observed user data confuses the judgment on anchor links, resulting in the matching collision problem in practice. In this paper, we explore local structure consistency and then construct a matching graph in order to circumvent matching collisions. Furthermore, we propose graph convolution networks with mini-batch strategy, efficiently solving anchor link prediction on matching graph. The experimental results on three real application scenarios show the great potentials of our proposed method in both prediction accuracy and efficiency. In addition, the visualization of learned embeddings provides us a qualitative way to understand the inference of anchor links on the matching graph.