Abstract:In this work, we tackle the challenging problem of unsupervised video domain adaptation (UVDA) for action recognition. We specifically focus on scenarios with a substantial domain gap, in contrast to existing works primarily deal with small domain gaps between labeled source domains and unlabeled target domains. To establish a more realistic setting, we introduce a novel UVDA scenario, denoted as Kinetics->BABEL, with a more considerable domain gap in terms of both temporal dynamics and background shifts. To tackle the temporal shift, i.e., action duration difference between the source and target domains, we propose a global-local view alignment approach. To mitigate the background shift, we propose to learn temporal order sensitive representations by temporal order learning and background invariant representations by background augmentation. We empirically validate that the proposed method shows significant improvement over the existing methods on the Kinetics->BABEL dataset with a large domain gap. The code is available at https://github.com/KHUVLL/GLAD.
Abstract:The task of predicting future actions from a video is crucial for a real-world agent interacting with others. When anticipating actions in the distant future, we humans typically consider long-term relations over the whole sequence of actions, i.e., not only observed actions in the past but also potential actions in the future. In a similar spirit, we propose an end-to-end attention model for action anticipation, dubbed Future Transformer (FUTR), that leverages global attention over all input frames and output tokens to predict a minutes-long sequence of future actions. Unlike the previous autoregressive models, the proposed method learns to predict the whole sequence of future actions in parallel decoding, enabling more accurate and fast inference for long-term anticipation. We evaluate our method on two standard benchmarks for long-term action anticipation, Breakfast and 50 Salads, achieving state-of-the-art results.