Abstract:In this work, we tackle the problem of long-form video-language grounding (VLG). Given a long-form video and a natural language query, a model should temporally localize the precise moment that answers the query. Humans can easily solve VLG tasks, even with arbitrarily long videos, by discarding irrelevant moments using extensive and robust knowledge gained from experience. Unlike humans, existing VLG methods are prone to fall into superficial cues learned from small-scale datasets, even when they are within irrelevant frames. To overcome this challenge, we propose EI-VLG, a VLG method that leverages richer textual information provided by a Multi-modal Large Language Model (MLLM) as a proxy for human experiences, helping to effectively exclude irrelevant frames. We validate the effectiveness of the proposed method via extensive experiments on a challenging EgoNLQ benchmark.
Abstract:In this work, we tackle the challenging problem of unsupervised video domain adaptation (UVDA) for action recognition. We specifically focus on scenarios with a substantial domain gap, in contrast to existing works primarily deal with small domain gaps between labeled source domains and unlabeled target domains. To establish a more realistic setting, we introduce a novel UVDA scenario, denoted as Kinetics->BABEL, with a more considerable domain gap in terms of both temporal dynamics and background shifts. To tackle the temporal shift, i.e., action duration difference between the source and target domains, we propose a global-local view alignment approach. To mitigate the background shift, we propose to learn temporal order sensitive representations by temporal order learning and background invariant representations by background augmentation. We empirically validate that the proposed method shows significant improvement over the existing methods on the Kinetics->BABEL dataset with a large domain gap. The code is available at https://github.com/KHUVLL/GLAD.