Abstract:We investigate the problem of selecting features for datasets that can be naturally partitioned into subgroups (e.g., according to socio-demographic groups and age), each with its own dominant set of features. Within this subgroup-oriented framework, we address the challenge of systematic missing data, a scenario in which some feature values are missing for all tuples of a subgroup, due to flawed data integration, regulatory constraints, or privacy concerns. Feature selection is governed by finding mutual Information, a popular quantification of correlation, between features and a target variable. Our goal is to identify top-K feature subsets of some fixed size with the highest joint mutual information with a target variable. In the presence of systematic missing data, the closed form of mutual information could not simply be applied. We argue that in such a setting, leveraging relationships between available feature mutual information within a subgroup or across subgroups can assist inferring missing mutual information values. We propose a generalizable model based on heterogeneous graph neural network to identify interdependencies between feature-subgroup-target variable connections by modeling it as a multiplex graph, and employing information propagation between its nodes. We address two distinct scalability challenges related to training and propose principled solutions to tackle them. Through an extensive empirical evaluation, we demonstrate the efficacy of the proposed solutions both qualitatively and running time wise.
Abstract:Current crowdsourcing platforms provide little support for worker feedback. Workers are sometimes invited to post free text describing their experience and preferences in completing tasks. They can also use forums such as Turker Nation1 to exchange preferences on tasks and requesters. In fact, crowdsourcing platforms rely heavily on observing workers and inferring their preferences implicitly. In this work, we believe that asking workers to indicate their preferences explicitly improve their experience in task completion and hence, the quality of their contributions. Explicit elicitation can indeed help to build more accurate worker models for task completion that captures the evolving nature of worker preferences. We design a worker model whose accuracy is improved iteratively by requesting preferences for task factors such as required skills, task payment, and task relevance. We propose a generic framework, develop efficient solutions in realistic scenarios, and run extensive experiments that show the benefit of explicit preference elicitation over implicit ones with statistical significance.
Abstract:Existing research in crowdsourcing has investigated how to recommend tasks to workers based on which task the workers have already completed, referred to as {\em implicit feedback}. We, on the other hand, investigate the task recommendation problem, where we leverage both implicit feedback and explicit features of the task. We assume that we are given a set of workers, a set of tasks, interactions (such as the number of times a worker has completed a particular task), and the presence of explicit features of each task (such as, task location). We intend to recommend tasks to the workers by exploiting the implicit interactions, and the presence or absence of explicit features in the tasks. We formalize the problem as an optimization problem, propose two alternative problem formulations and respective solutions that exploit implicit feedback, explicit features, as well as similarity between the tasks. We compare the efficacy of our proposed solutions against multiple state-of-the-art techniques using two large scale real world datasets.
Abstract:Mitigating risk-of-readmission of Congestive Heart Failure (CHF) patients within 30 days of discharge is important because such readmissions are not only expensive but also critical indicator of provider care and quality of treatment. Accurately predicting the risk-of-readmission may allow hospitals to identify high-risk patients and eventually improve quality of care by identifying factors that contribute to such readmissions in many scenarios. In this paper, we investigate the problem of predicting risk-of-readmission as a supervised learning problem, using a multi-layer classification approach. Earlier contributions inadequately attempted to assess a risk value for 30 day readmission by building a direct predictive model as opposed to our approach. We first split the problem into various stages, (a) at risk in general (b) risk within 60 days (c) risk within 30 days, and then build suitable classifiers for each stage, thereby increasing the ability to accurately predict the risk using multiple layers of decision. The advantage of our approach is that we can use different classification models for the subtasks that are more suited for the respective problems. Moreover, each of the subtasks can be solved using different features and training data leading to a highly confident diagnosis or risk compared to a one-shot single layer approach. An experimental evaluation on actual hospital patient record data from Multicare Health Systems shows that our model is significantly better at predicting risk-of-readmission of CHF patients within 30 days after discharge compared to prior attempts.