Yonsei University, Seoul, Republic of Korea
Abstract:Video anomaly detection (VAD) is a crucial task in video analysis and surveillance within computer vision. Currently, VAD is gaining attention with memory techniques that store the features of normal frames. The stored features are utilized for frame reconstruction, identifying an abnormality when a significant difference exists between the reconstructed and input frames. However, this approach faces several challenges due to the simultaneous optimization required for both the memory and encoder-decoder model. These challenges include increased optimization difficulty, complexity of implementation, and performance variability depending on the memory size. To address these challenges,we propose an effective memory method for VAD, called VideoPatchCore. Inspired by PatchCore, our approach introduces a structure that prioritizes memory optimization and configures three types of memory tailored to the characteristics of video data. This method effectively addresses the limitations of existing memory-based methods, achieving good performance comparable to state-of-the-art methods. Furthermore, our method requires no training and is straightforward to implement, making VAD tasks more accessible. Our code is available online at github.com/SkiddieAhn/Paper-VideoPatchCore.
Abstract:The discharge summary is a one of critical documents in the patient journey, encompassing all events experienced during hospitalization, including multiple visits, medications, tests, surgery/procedures, and admissions/discharge. Providing a summary of the patient's progress is crucial, as it significantly influences future care and planning. Consequently, clinicians face the laborious and resource-intensive task of manually collecting, organizing, and combining all the necessary data for a discharge summary. Therefore, we propose "NOTE", which stands for "Notable generation Of patient Text summaries through an Efficient approach based on direct preference optimization". NOTE is based on Medical Information Mart for Intensive Care- III dataset and summarizes a single hospitalization of a patient. Patient events are sequentially combined and used to generate a discharge summary for each hospitalization. In the present circumstances, large language models' application programming interfaces (LLMs' APIs) are widely available, but importing and exporting medical data presents significant challenges due to privacy protection policies in healthcare institutions. Moreover, to ensure optimal performance, it is essential to implement a lightweight model for internal server or program within the hospital. Therefore, we utilized DPO and parameter efficient fine tuning (PEFT) techniques to apply a fine-tuning method that guarantees superior performance. To demonstrate the practical application of the developed NOTE, we provide a webpage-based demonstration software. In the future, we will aim to deploy the software available for actual use by clinicians in hospital. NOTE can be utilized to generate various summaries not only discharge summaries but also throughout a patient's journey, thereby alleviating the labor-intensive workload of clinicians and aiming for increased efficiency.
Abstract:Logical anomalies (LA) refer to data violating underlying logical constraints e.g., the quantity, arrangement, or composition of components within an image. Detecting accurately such anomalies requires models to reason about various component types through segmentation. However, curation of pixel-level annotations for semantic segmentation is both time-consuming and expensive. Although there are some prior few-shot or unsupervised co-part segmentation algorithms, they often fail on images with industrial object. These images have components with similar textures and shapes, and a precise differentiation proves challenging. In this study, we introduce a novel component segmentation model for LA detection that leverages a few labeled samples and unlabeled images sharing logical constraints. To ensure consistent segmentation across unlabeled images, we employ a histogram matching loss in conjunction with an entropy loss. As segmentation predictions play a crucial role, we propose to enhance both local and global sample validity detection by capturing key aspects from visual semantics via three memory banks: class histograms, component composition embeddings and patch-level representations. For effective LA detection, we propose an adaptive scaling strategy to standardize anomaly scores from different memory banks in inference. Extensive experiments on the public benchmark MVTec LOCO AD reveal our method achieves 98.1% AUROC in LA detection vs. 89.6% from competing methods.
Abstract:Vicarious learning is a vital component of organizational learning. We theorize and model two fundamental processes underlying vicarious learning: observation of actions (learning what they do) vs. belief sharing (learning what they think). The analysis of our model points to three key insights. First, vicarious learning through either process is beneficial even when no agent in a system of vicarious learners begins with a knowledge advantage. Second, vicarious learning through belief sharing is not universally better than mutual observation of actions and outcomes. Specifically, enabling mutual observability of actions and outcomes is superior to sharing of beliefs when the task environment features few alternatives with large differences in their value and there are no time pressures. Third, symmetry in vicarious learning in fact adversely affects belief sharing but improves observational learning. All three results are shown to be the consequence of how vicarious learning affects self-confirming biased beliefs.