Abstract:Art created using generated Artificial Intelligence has taken the world by storm and generated excitement for many digital creators and technologists. However, the reception and reaction from artists have been mixed. Concerns about plagiarizing their artworks and styles for datasets and uncertainty around the future of digital art sparked movements in artist communities shunning the use of AI for generating art and protecting artists' rights. Collaborating with these tools for novel creative use cases also sparked hope from some creators. Artists are an integral stakeholder in the rapidly evolving digital creativity industry and understanding their concerns and hopes inform responsible development and use of creativity support tools. In this work, we study artists' sentiments about AI-generated art. We interviewed 7 artists and analyzed public posts from artists on social media platforms Reddit, Twitter and Artstation. We report artists' main concerns and hopes around AI-generated artwork, informing a way forward for inclusive development of these tools.
Abstract:An essential element of K-12 AI literacy is educating learners about the ethical and societal implications of AI systems. Previous work in AI ethics literacy have developed curriculum and classroom activities that engage learners in reflecting on the ethical implications of AI systems and developing responsible AI. There is little work in using game-based learning methods in AI literacy. Games are known to be compelling media to teach children about complex STEM concepts. In this work, we developed a competitive card game for middle and high school students called "AI Audit" where they play as AI start-up founders building novel AI-powered technology. Players can challenge other players with potential harms of their technology or defend their own businesses by features that mitigate these harms. The game mechanics reward systems that are ethically developed or that take steps to mitigate potential harms. In this paper, we present the game design, teacher resources for classroom deployment and early playtesting results. We discuss our reflections about using games as teaching tools for AI literacy in K-12 classrooms.
Abstract:Generative AI tools introduce new and accessible forms of media creation for youth. They also raise ethical concerns about the generation of fake media, data protection, privacy and ownership of AI-generated art. Since generative AI is already being used in products used by youth, it is critical that they understand how these tools work and how they can be used or misused. In this work, we facilitated students' generative AI learning through expression of their imagined future identities. We designed a learning workshop - Dreaming with AI - where students learned about the inner workings of generative AI tools, used text-to-image generation algorithms to create their imaged future dreams, reflected on the potential benefits and harms of generative AI tools and voiced their opinions about policies for the use of these tools in classrooms. In this paper, we present the learning activities and experiences of 34 high school students who engaged in our workshops. Students reached creative learning objectives by using prompt engineering to create their future dreams, gained technical knowledge by learning the abilities, limitations, text-visual mappings and applications of generative AI, and identified most potential societal benefits and harms of generative AI.
Abstract:Metric Elicitation (ME) is a framework for eliciting classification metrics that better align with implicit user preferences based on the task and context. The existing ME strategy so far is based on the assumption that users can most easily provide preference feedback over classifier statistics such as confusion matrices. This work examines ME, by providing a first ever implementation of the ME strategy. Specifically, we create a web-based ME interface and conduct a user study that elicits users' preferred metrics in a binary classification setting. We discuss the study findings and present guidelines for future research in this direction.
Abstract:Generative Artificial Intelligence (AI) models are a compelling way to introduce K-12 students to AI education using an artistic medium, and hence have drawn attention from K-12 AI educators. Previous Creative AI curricula mainly focus on Generative Adversarial Networks (GANs) while paying less attention to Autoregressive Models, Variational Autoencoders (VAEs), or other generative models, which have since become common in the field of generative AI. VAEs' latent-space structure and interpolation ability could effectively ground the interdisciplinary learning of AI, creative arts, and philosophy. Thus, we designed a lesson to teach high school students about VAEs. We developed a web-based game and used Plato's cave, a philosophical metaphor, to introduce how VAEs work. We used a Google Colab notebook for students to re-train VAEs with their hand-written digits to consolidate their understandings. Finally, we guided the exploration of creative VAE tools such as SketchRNN and MusicVAE to draw the connection between what they learned and real-world applications. This paper describes the lesson design and shares insights from the pilot studies with 22 students. We found that our approach was effective in teaching students about a novel AI concept.
Abstract:Can visual artworks created using generative visual algorithms inspire human creativity in storytelling? We asked writers to write creative stories from a starting prompt, and provided them with visuals created by generative AI models from the same prompt. Compared to a control group, writers who used the visuals as story writing aid wrote significantly more creative, original, complete and visualizable stories, and found the task more fun. Of the generative algorithms used (BigGAN, VQGAN, DALL-E, CLIPDraw), VQGAN was the most preferred. The control group that did not view the visuals did significantly better in integrating the starting prompts. Findings indicate that cross modality inputs by AI can benefit divergent aspects of creativity in human-AI co-creation, but hinders convergent thinking.
Abstract:Digital tools have long been used for supporting children's creativity. Digital games that allow children to create artifacts and express themselves in a playful environment serve as efficient Creativity Support Tools (or CSTs). Creativity is also scaffolded by social interactions with others in their environment. In our work, we explore the use of game-based interactions with a social agent to scaffold children's creative expression as game players. We designed three collaborative games and play-tested with 146 5-10 year old children played with the social robot Jibo, which affords three different kinds of creativity: verbal creativity, figural creativity and divergent thinking during creative problem solving. In this paper, we reflect on game mechanic practices that we incorporated to design for stimulating creativity in children. These strategies may be valuable to game designers and HCI researchers designing games and social agents for supporting children's creativity.