Abstract:Spacecraft trajectory design is a global search problem, where previous work has revealed specific solution structures that can be captured with data-driven methods. This paper explores two global search problems in the circular restricted three-body problem: hybrid cost function of minimum fuel/time-of-flight and transfers to energy-dependent invariant manifolds. These problems display a fundamental structure either in the optimal control profile or the use of dynamical structures. We build on our prior generative machine learning framework to apply diffusion models to learn the conditional probability distribution of the search problem and analyze the model's capability to capture these structures.
Abstract:The diffusion model has shown success in generating high-quality and diverse solutions to trajectory optimization problems. However, diffusion models with neural networks inevitably make prediction errors, which leads to constraint violations such as unmet goals or collisions. This paper presents a novel constraint-aware diffusion model for trajectory optimization. We introduce a novel hybrid loss function for training that minimizes the constraint violation of diffusion samples compared to the groundtruth while recovering the original data distribution. Our model is demonstrated on tabletop manipulation and two-car reach-avoid problems, outperforming traditional diffusion models in minimizing constraint violations while generating samples close to locally optimal solutions.
Abstract:Trajectory optimization in robotics poses a challenging non-convex problem due to complex dynamics and environmental settings. Traditional numerical optimization methods are time-consuming in finding feasible solutions, whereas data-driven approaches lack safety guarantees for the output trajectories. In this paper, we introduce a general and fully parallelizable framework that combines diffusion models and numerical solvers for non-convex trajectory optimization, ensuring both computational efficiency and constraint satisfaction. A novel constrained diffusion model is proposed with an additional constraint violation loss for training. It aims to approximate the distribution of locally optimal solutions while minimizing constraint violations during sampling. The samples are then used as initial guesses for a numerical solver to refine and derive final solutions with formal verification of feasibility and optimality. Experimental evaluations on three tasks over different robotics domains verify the improved constraint satisfaction and computational efficiency with 4$\times$ to 22$\times$ acceleration using our proposed method, which generalizes across trajectory optimization problems and scales well with problem complexity.
Abstract:Preliminary trajectory design is a global search problem that seeks multiple qualitatively different solutions to a trajectory optimization problem. Due to its high dimensionality and non-convexity, and the frequent adjustment of problem parameters, the global search becomes computationally demanding. In this paper, we exploit the clustering structure in the solutions and propose an amortized global search (AmorGS) framework. We use deep generative models to predict trajectory solutions that share similar structures with previously solved problems, which accelerates the global search for unseen parameter values. Our method is evaluated using De Jong's 5th function and a low-thrust circular restricted three-body problem.