Abstract:This paper reports on progress towards building an online language learning tool to provide learners with conversational experience by using dialog systems as conversation practice partners. Our system can adapt to users' language proficiency on the fly. We also provide automatic grammar error feedback to help users learn from their mistakes. According to our first adopters, our system is entertaining and useful. Furthermore, we will provide the learning technology community a large-scale conversation dataset on language learning and grammar correction. Our next step is to make our system more adaptive to user profile information by using reinforcement learning algorithms.
Abstract:Effective human-chatbot conversations need to achieve both coherence and efficiency. Complex conversation settings such as persuasion involve communicating changes in attitude or behavior, so users' perspectives need to be carefully considered and addressed, even when not directly related to the topic. In this work, we contribute a novel modular dialogue system framework that seamlessly integrates factual information and social content into persuasive dialogue. Our framework is generalizable to any dialogue tasks that have mixed social and task contents. We conducted a study that compared user evaluations of our framework versus a baseline end-to-end generation model. We found our model was evaluated to be more favorable in all dimensions including competence and friendliness compared to the baseline model which does not explicitly handle social content or factual questions.