Abstract:We introduce modeLing, a novel benchmark of Linguistics Olympiad-style puzzles which tests few-shot reasoning in AI systems. Solving these puzzles necessitates inferring aspects of a language's grammatical structure from a small number of examples. Such puzzles provide a natural testbed for language models, as they require compositional generalization and few-shot inductive reasoning. Consisting solely of new puzzles written specifically for this work, modeLing has no risk of appearing in the training data of existing AI systems: this ameliorates the risk of data leakage, a potential confounder for many prior evaluations of reasoning. Evaluating several large open source language models and GPT on our benchmark, we observe non-negligible accuracy, demonstrating few-shot emergent reasoning ability which cannot merely be attributed to shallow memorization. However, imperfect model performance suggests that modeLing can be used to measure further progress in linguistic reasoning.
Abstract:Large language models (LLMs) have accomplished remarkable reasoning performance in various domains. However, in the domain of reasoning tasks, we discover a frailty: LLMs are surprisingly brittle to the ordering of the premises, despite the fact that such ordering does not alter the underlying task. In particular, we observe that LLMs achieve the best performance when the premise order aligns with the context required in intermediate reasoning steps. For example, in deductive reasoning tasks, presenting the premises in the same order as the ground truth proof in the prompt (as opposed to random ordering) drastically increases the model's accuracy. We first examine the effect of premise ordering on deductive reasoning on a variety of LLMs, and our evaluation shows that permuting the premise order can cause a performance drop of over 30%. In addition, we release the benchmark R-GSM, based on GSM8K, to examine the ordering effect for mathematical problem-solving, and we again observe a significant drop in accuracy, relative to the original GSM8K benchmark.