Abstract:Models applied on real time response task, like click-through rate (CTR) prediction model, require high accuracy and rigorous response time. Therefore, top-performing deep models of high depth and complexity are not well suited for these applications with the limitations on the inference time. In order to further improve the neural networks' performance given the time and computational limitations, we propose an approach that exploits a cumbersome net to help train the lightweight net for prediction. We dub the whole process rocket launching, where the cumbersome booster net is used to guide the learning of the target light net throughout the whole training process. We analyze different loss functions aiming at pushing the light net to behave similarly to the booster net, and adopt the loss with best performance in our experiments. We use one technique called gradient block to improve the performance of the light net and booster net further. Experiments on benchmark datasets and real-life industrial advertisement data present that our light model can get performance only previously achievable with more complex models.
Abstract:Recent progress on automatic generation of image captions has shown that it is possible to describe the most salient information conveyed by images with accurate and meaningful sentences. In this paper, we propose an image caption system that exploits the parallel structures between images and sentences. In our model, the process of generating the next word, given the previously generated ones, is aligned with the visual perception experience where the attention shifting among the visual regions imposes a thread of visual ordering. This alignment characterizes the flow of "abstract meaning", encoding what is semantically shared by both the visual scene and the text description. Our system also makes another novel modeling contribution by introducing scene-specific contexts that capture higher-level semantic information encoded in an image. The contexts adapt language models for word generation to specific scene types. We benchmark our system and contrast to published results on several popular datasets. We show that using either region-based attention or scene-specific contexts improves systems without those components. Furthermore, combining these two modeling ingredients attains the state-of-the-art performance.