Abstract:Large self-supervised pre-trained speech models require computationally expensive fine-tuning for downstream tasks. Soft prompt tuning offers a simple parameter-efficient alternative by utilizing minimal soft prompt guidance, enhancing portability while also maintaining competitive performance. However, not many people understand how and why this is so. In this study, we aim to deepen our understanding of this emerging method by investigating the role of soft prompts in automatic speech recognition (ASR). Our findings highlight their role as zero-shot learners in improving ASR performance but also make them vulnerable to malicious modifications. Soft prompts aid generalization but are not obligatory for inference. We also identify two primary roles of soft prompts: content refinement and noise information enhancement, which enhances robustness against background noise. Additionally, we propose an effective modification on noise prompts to show that they are capable of zero-shot learning on adapting to out-of-distribution noise environments.
Abstract:Most of the existing neural-based models for keyword spotting (KWS) in smart devices require thousands of training samples to learn a decent audio representation. However, with the rising demand for smart devices to become more personalized, KWS models need to adapt quickly to smaller user samples. To tackle this challenge, we propose a contrastive speech mixup (CosMix) learning algorithm for low-resource KWS. CosMix introduces an auxiliary contrastive loss to the existing mixup augmentation technique to maximize the relative similarity between the original pre-mixed samples and the augmented samples. The goal is to inject enhancing constraints to guide the model towards simpler but richer content-based speech representations from two augmented views (i.e. noisy mixed and clean pre-mixed utterances). We conduct our experiments on the Google Speech Command dataset, where we trim the size of the training set to as small as 2.5 mins per keyword to simulate a low-resource condition. Our experimental results show a consistent improvement in the performance of multiple models, which exhibits the effectiveness of our method.
Abstract:Existing self-supervised pre-trained speech models have offered an effective way to leverage massive unannotated corpora to build good automatic speech recognition (ASR). However, many current models are trained on a clean corpus from a single source, which tends to do poorly when noise is present during testing. Nonetheless, it is crucial to overcome the adverse influence of noise for real-world applications. In this work, we propose a novel training framework, called deHuBERT, for noise reduction encoding inspired by H. Barlow's redundancy-reduction principle. The new framework improves the HuBERT training algorithm by introducing auxiliary losses that drive the self- and cross-correlation matrix between pairwise noise-distorted embeddings towards identity matrix. This encourages the model to produce noise-agnostic speech representations. With this method, we report improved robustness in noisy environments, including unseen noises, without impairing the performance on the clean set.