Abstract:The rapid advancement of artificial intelligence (AI) technologies presents profound challenges to societal safety. As AI systems become more capable, accessible, and integrated into critical services, the dual nature of their potential is increasingly clear. While AI can enhance defensive capabilities in areas like threat detection, risk assessment, and automated security operations, it also presents avenues for malicious exploitation and large-scale societal harm, for example through automated influence operations and cyber attacks. Understanding the dynamics that shape AI's capacity to both cause harm and enhance protective measures is essential for informed decision-making regarding the deployment, use, and integration of advanced AI systems. This paper builds on recent work on offense-defense dynamics within the realm of AI, proposing a taxonomy to map and examine the key factors that influence whether AI systems predominantly pose threats or offer protective benefits to society. By establishing a shared terminology and conceptual foundation for analyzing these interactions, this work seeks to facilitate further research and discourse in this critical area.