Abstract:This paper investigates the increasing roles of Renewable Energy Sources (RES) and Electric Vehicles (EVs). While indicating a new era of sustainable energy, these also introduce complex challenges, including the need to balance supply and demand and smooth peak consumptions amidst rising EV adoption rates. Addressing these challenges requires innovative solutions such as Demand Response (DR), energy flexibility management, Renewable Energy Communities (RECs), and more specifically for EVs, Vehicle-to-Grid (V2G). However, existing V2G approaches often fall short in real-world adaptability, global REC optimization with other flexible assets, scalability, and user engagement. To bridge this gap, this paper introduces EnergAIze, a Multi-Agent Reinforcement Learning (MARL) energy management framework, leveraging the Multi-Agent Deep Deterministic Policy Gradient (MADDPG) algorithm. EnergAIze enables user-centric and multi-objective energy management by allowing each prosumer to select from a range of personal management objectives, thus encouraging engagement. Additionally, it architects' data protection and ownership through decentralized computing, where each prosumer can situate an energy management optimization node directly at their own dwelling. The local node not only manages local energy assets but also fosters REC wide optimization. The efficacy of EnergAIze was evaluated through case studies employing the CityLearn simulation framework. These simulations were instrumental in demonstrating EnergAIze's adeptness at implementing V2G technology within a REC and other energy assets. The results show reduction in peak loads, ramping, carbon emissions, and electricity costs at the REC level while optimizing for individual prosumers objectives.
Abstract:As IoT technologies mature, they are increasingly finding their way into more sensitive domains, such as Medical and Industrial IoT, in which safety and cyber-security are of great importance. While the number of deployed IoT devices continues to increase exponentially, they still present severe cyber-security vulnerabilities. Effective authentication is paramount to support trustworthy IIoT communications, however, current solutions focus on upper-layer identity verification or key-based cryptography which are often inadequate to the heterogeneous IIoT environment. In this work, we present a first step towards achieving powerful and flexible IIoT device authentication, by leveraging AI adaptive Radio Frequency Fingerprinting technique selection and tuning, at the PHY layer for highly accurate device authentication over challenging RF environments.
Abstract:In the near future, the development of autonomous driving will get more complex as the vehicles will not only rely on their own sensors but also communicate with other vehicles and the infrastructure to cooperate and improve the driving experience. Towards this, several research areas, such as robotics, communication, and control, are required to collaborate in order to implement future-ready methods. However, each area focuses on the development of its own components first, while the effects the components may have on the whole system are only considered at a later stage. In this work, we integrate the simulation tools of robotics, communication and control namely ROS2, OMNeT++, and MATLAB to evaluate cooperative driving scenarios. The framework can be utilized to develop the individual components using the designated tools, while the final evaluation can be conducted in a complete scenario, enabling the simulation of advanced multi-robot applications for cooperative driving. Furthermore, it can be used to integrate additional tools, as the integration is done in a modular way. We showcase the framework by demonstrating a platooning scenario under cooperative adaptive cruise control (CACC) and the ETSI ITS-G5 communication architecture. Additionally, we compare the differences of the controller performance between the theoretical analysis and practical case study.
Abstract:Cooperative vehicle platooning applications increasingly demand realistic simulation tools to ease their validation and to bridge the gap between development and real-world deployment. However, their complexity and cost often hinder its validation in the real world. In this paper, we propose a realistic simulation framework for vehicular platoons that integrates Gazebo with OMNeT++ over Robot Operating System (ROS) to support the simulation of realistic scenarios of autonomous vehicular platoons and their cooperative control.