Abstract:Currently, the development of computer games has shown a tremendous surge. The ease and speed of internet access today have also influenced the development of computer games, especially computer games that are played online. Internet technology has allowed computer games to be played in multiplayer mode. Interaction between players in a computer game can be built in several ways, one of which is by providing balanced opponents. Opponents can be developed using intelligent agents. On the other hand, research on developing intelligent agents is also growing rapidly. In computer game development, one of the easiest ways to measure the performance of an intelligent agent is to develop a virtual environment that allows the intelligent agent to interact with other players. In this research, we try to develop an intelligent agent and virtual environment for the board game. To be easily accessible, the intelligent agent and virtual environment are then developed into an Application Programming Interface (API) service called Gapoera API. The Gapoera API service that is built is expected to help game developers develop a game without having to think much about the artificial intelligence that will be embedded in the game. This service provides a basic multilevel intelligent agent that can provide users with playing board games commonly played in Indonesia. Although the Gapoera API can be used for various types of games, in this paper, we will focus on the discussion on a popular traditional board game in Indonesia, namely Mancala. The test results conclude that the multilevel agent concept developed has worked as expected. On the other hand, the development of the Gapoera API service has also been successfully accessed on several game platforms.
Abstract:Automatic short answer scoring is one of the text classification problems to assess students' answers during exams automatically. Several challenges can arise in making an automatic short answer scoring system, one of which is the quantity and quality of the data. The data labeling process is not easy because it requires a human annotator who is an expert in their field. Further, the data imbalance process is also a challenge because the number of labels for correct answers is always much less than the wrong answers. In this paper, we propose the use of a stacking model based on neural network and XGBoost for classification process with sentence embedding feature. We also propose to use data upsampling method to handle imbalance classes and hyperparameters optimization algorithm to find a robust model automatically. We use Ukara 1.0 Challenge dataset and our best model obtained an F1-score of 0.821 exceeding the previous work at the same dataset.