Abstract:Fault tolerance in Deep Neural Networks (DNNs) deployed on resource-constrained systems presents unique challenges for high-accuracy applications with strict timing requirements. Memory bit-flips can severely degrade DNN accuracy, while traditional protection approaches like Triple Modular Redundancy (TMR) often sacrifice accuracy to maintain reliability, creating a three-way dilemma between reliability, accuracy, and timeliness. We introduce NAPER, a novel protection approach that addresses this challenge through ensemble learning. Unlike conventional redundancy methods, NAPER employs heterogeneous model redundancy, where diverse models collectively achieve higher accuracy than any individual model. This is complemented by an efficient fault detection mechanism and a real-time scheduler that prioritizes meeting deadlines by intelligently scheduling recovery operations without interrupting inference. Our evaluations demonstrate NAPER's superiority: 40% faster inference in both normal and fault conditions, maintained accuracy 4.2% higher than TMR-based strategies, and guaranteed uninterrupted operation even during fault recovery. NAPER effectively balances the competing demands of accuracy, reliability, and timeliness in real-time DNN applications
Abstract:Southeast Asia (SEA) is a region of extraordinary linguistic and cultural diversity, yet it remains significantly underrepresented in vision-language (VL) research. This often results in artificial intelligence (AI) models that fail to capture SEA cultural nuances. To fill this gap, we present SEA-VL, an open-source initiative dedicated to developing high-quality, culturally relevant data for SEA languages. By involving contributors from SEA countries, SEA-VL aims to ensure better cultural relevance and diversity, fostering greater inclusivity of underrepresented languages in VL research. Beyond crowdsourcing, our initiative goes one step further in the exploration of the automatic collection of culturally relevant images through crawling and image generation. First, we find that image crawling achieves approximately ~85% cultural relevance while being more cost- and time-efficient than crowdsourcing. Second, despite the substantial progress in generative vision models, synthetic images remain unreliable in accurately reflecting SEA cultures. The generated images often fail to reflect the nuanced traditions and cultural contexts of the region. Collectively, we gather 1.28M SEA culturally-relevant images, more than 50 times larger than other existing datasets. Through SEA-VL, we aim to bridge the representation gap in SEA, fostering the development of more inclusive AI systems that authentically represent diverse cultures across SEA.
Abstract:Currently, the development of computer games has shown a tremendous surge. The ease and speed of internet access today have also influenced the development of computer games, especially computer games that are played online. Internet technology has allowed computer games to be played in multiplayer mode. Interaction between players in a computer game can be built in several ways, one of which is by providing balanced opponents. Opponents can be developed using intelligent agents. On the other hand, research on developing intelligent agents is also growing rapidly. In computer game development, one of the easiest ways to measure the performance of an intelligent agent is to develop a virtual environment that allows the intelligent agent to interact with other players. In this research, we try to develop an intelligent agent and virtual environment for the board game. To be easily accessible, the intelligent agent and virtual environment are then developed into an Application Programming Interface (API) service called Gapoera API. The Gapoera API service that is built is expected to help game developers develop a game without having to think much about the artificial intelligence that will be embedded in the game. This service provides a basic multilevel intelligent agent that can provide users with playing board games commonly played in Indonesia. Although the Gapoera API can be used for various types of games, in this paper, we will focus on the discussion on a popular traditional board game in Indonesia, namely Mancala. The test results conclude that the multilevel agent concept developed has worked as expected. On the other hand, the development of the Gapoera API service has also been successfully accessed on several game platforms.
Abstract:Automatic short answer scoring is one of the text classification problems to assess students' answers during exams automatically. Several challenges can arise in making an automatic short answer scoring system, one of which is the quantity and quality of the data. The data labeling process is not easy because it requires a human annotator who is an expert in their field. Further, the data imbalance process is also a challenge because the number of labels for correct answers is always much less than the wrong answers. In this paper, we propose the use of a stacking model based on neural network and XGBoost for classification process with sentence embedding feature. We also propose to use data upsampling method to handle imbalance classes and hyperparameters optimization algorithm to find a robust model automatically. We use Ukara 1.0 Challenge dataset and our best model obtained an F1-score of 0.821 exceeding the previous work at the same dataset.