Abstract:In medicine, image registration is vital in image-guided interventions and other clinical applications. However, it is a difficult subject to be addressed which by the advent of machine learning, there have been considerable progress in algorithmic performance has recently been achieved for medical image registration in this area. The implementation of deep neural networks provides an opportunity for some medical applications such as conducting image registration in less time with high accuracy, playing a key role in countering tumors during the operation. The current study presents a comprehensive scoping review on the state-of-the-art literature of medical image registration studies based on unsupervised deep neural networks is conducted, encompassing all the related studies published in this field to this date. Here, we have tried to summarize the latest developments and applications of unsupervised deep learning-based registration methods in the medical field. Fundamental and main concepts, techniques, statistical analysis from different viewpoints, novelties, and future directions are elaborately discussed and conveyed in the current comprehensive scoping review. Besides, this review hopes to help those active readers, who are riveted by this field, achieve deep insight into this exciting field.
Abstract:The volume of malware and the number of attacks in IoT devices are rising everyday, which encourages security professionals to continually enhance their malware analysis tools. Researchers in the field of cyber security have extensively explored the usage of sophisticated analytics and the efficiency of malware detection. With the introduction of new malware kinds and attack routes, security experts confront considerable challenges in developing efficient malware detection and analysis solutions. In this paper, a different view of malware analysis is considered and the risk level of each sample feature is computed, and based on that the risk level of that sample is calculated. In this way, a criterion is introduced that is used together with accuracy and FPR criteria for malware analysis in IoT environment. In this paper, three malware detection methods based on visualization techniques called the clustering approach, the probabilistic approach, and the deep learning approach are proposed. Then, in addition to the usual machine learning criteria namely accuracy and FPR, a proposed criterion based on the risk of samples has also been used for comparison, with the results showing that the deep learning approach performed better in detecting malware
Abstract:This description includes some explanation about algorithms and also algorithms that are being implemented by Cyrus team members. The objectives of this description are to express a brief explanation about shoot, block, mark and defensive decision will be given. It also explained about the parts that has been implemented. The base code that Cyrus used is agent 3.11.
Abstract:Applying image sensors in automation of Industrial Internet of Things (IIoT) technology is on the rise, day by day. In such companies, a large number of high volume images are transmitted at any moment; therefore, a significant challenge is reducing the amount of transmitted information and consequently bandwidth without reducing the quality of images. Image compression in sensors, in this regard, will save bandwidth and speed up data transmitting. There are several pieces of research in image compression for sensor networks, but, according to the nature of image transfer in IIoT, there is no study in this particular field. In this paper, it is for the first time that a new reusable technique to improve productivity in image compression is introduced and applied. To do this, a new adaptive lossy compression technique to compact sensor-generated images in IIoT by using K- Means++ and Intelligent Embedded Coding (IEC) as our novel approach, is presented. The new method is based on the colour of pixels so that pixels with the same or nearly the same colours are clustered around a centroid and finally, the colour of the pixels will be encoded. The experiments are based on a reputable image dataset from a real smart greenhouse; i.e. KOMATSUNA. The evaluation results reveal that, with the same compression rate, our approach compresses images with higher quality in comparison with other methods such as K-means, fuzzy C-means and fuzzy C-means++ clustering.
Abstract:Image-guided interventions are saving the lives of a large number of patients where the image registration problem should indeed be considered as the most complex and complicated issue to be tackled. On the other hand, the recently huge progress in the field of machine learning made by the possibility of implementing deep neural networks on the contemporary many-core GPUs opened up a promising window to challenge with many medical applications, where the registration is not an exception. In this paper, a comprehensive review on the state-of-the-art literature known as medical image registration using deep neural networks is presented. The review is systematic and encompasses all the related works previously published in the field. Key concepts, statistical analysis from different points of view, confiding challenges, novelties and main contributions, key-enabling techniques, future directions and prospective trends all are discussed and surveyed in details in this comprehensive review. This review allows a deep understanding and insight for the readers active in the field who are investigating the state-of-the-art and seeking to contribute the future literature.
Abstract:In this paper, we develop four malware detection methods using Hamming distance to find similarity between samples which are first nearest neighbors (FNN), all nearest neighbors (ANN), weighted all nearest neighbors (WANN), and k-medoid based nearest neighbors (KMNN). In our proposed methods, we can trigger the alarm if we detect an Android app is malicious. Hence, our solutions help us to avoid the spread of detected malware on a broader scale. We provide a detailed description of the proposed detection methods and related algorithms. We include an extensive analysis to asses the suitability of our proposed similarity-based detection methods. In this way, we perform our experiments on three datasets, including benign and malware Android apps like Drebin, Contagio, and Genome. Thus, to corroborate the actual effectiveness of our classifier, we carry out performance comparisons with some state-of-the-art classification and malware detection algorithms, namely Mixed and Separated solutions, the program dissimilarity measure based on entropy (PDME) and the FalDroid algorithms. We test our experiments in a different type of features: API, intent, and permission features on these three datasets. The results confirm that accuracy rates of proposed algorithms are more than 90% and in some cases (i.e., considering API features) are more than 99%, and are comparable with existing state-of-the-art solutions.
Abstract:Label manipulation attacks are a subclass of data poisoning attacks in adversarial machine learning used against different applications, such as malware detection. These types of attacks represent a serious threat to detection systems in environments having high noise rate or uncertainty, such as complex networks and Internet of Thing (IoT). Recent work in the literature has suggested using the $K$-Nearest Neighboring (KNN) algorithm to defend against such attacks. However, such an approach can suffer from low to wrong detection accuracy. In this paper, we design an architecture to tackle the Android malware detection problem in IoT systems. We develop an attack mechanism based on Silhouette clustering method, modified for mobile Android platforms. We proposed two Convolutional Neural Network (CNN)-type deep learning algorithms against this \emph{Silhouette Clustering-based Label Flipping Attack (SCLFA)}. We show the effectiveness of these two defense algorithms - \emph{Label-based Semi-supervised Defense (LSD)} and \emph{clustering-based Semi-supervised Defense (CSD)} - in correcting labels being attacked. We evaluate the performance of the proposed algorithms by varying the various machine learning parameters on three Android datasets: Drebin, Contagio, and Genome and three types of features: API, intent, and permission. Our evaluation shows that using random forest feature selection and varying ratios of features can result in an improvement of up to 19\% accuracy when compared with the state-of-the-art method in the literature.
Abstract:The widespread adoption of smartphones dramatically increases the risk of attacks and the spread of mobile malware, especially on the Android platform. Machine learning based solutions have been already used as a tool to supersede signature based anti-malware systems. However, malware authors leverage attributes from malicious and legitimate samples to estimate statistical difference in-order to create adversarial examples. Hence, to evaluate the vulnerability of machine learning algorithms in malware detection, we propose five different attack scenarios to perturb malicious applications (apps). By doing this, the classification algorithm inappropriately fits discriminant function on the set of data points, eventually yielding a higher misclassification rate. Further, to distinguish the adversarial examples from benign samples, we propose two defense mechanisms to counter attacks. To validate our attacks and solutions, we test our model on three different benchmark datasets. We also test our methods using various classifier algorithms and compare them with the state-of-the-art data poisoning method using the Jacobian matrix. Promising results show that generated adversarial samples can evade detection with a very high probability. Additionally, evasive variants generated by our attacks models when used to harden the developed anti-malware system improves the detection rate.