Abstract:Mixture-of-Experts (MoE) models scale neural networks by conditionally activating a small subset of experts, where the router plays a central role in determining expert specialization and overall model performance. However, many modern MoE systems still adopt linear routers in raw high-dimensional representation spaces, where representation mismatch, angular concentration, and scale-sensitive scoring can jointly undermine routing discriminability and stable expert specialization. In this work, we propose Low-rank \& Lipschitz-controlled Routing (L2R), a unified routing framework that reshapes both the routing space and scoring geometry. L2R performs expert assignment in a shared low-rank latent routing space and introduces Saturated Inner-Product Scoring (SIPS) to explicitly control the Lipschitz behavior of routing functions, yielding smoother and more stable routing geometry. In addition, L2R incorporates a parameter-efficient multi-anchor routing mechanism to enhance expert expressiveness. Extensive experiments on a large-scale language MoE model and a vision MoE setting on ImageNet demonstrate that L2R consistently improves routing stability, expert specialization, and overall model performance.
Abstract:In this paper, we propose a foreground-aware dataset distillation method that enhances patch selection in a content-adaptive manner. With the rising computational cost of training large-scale deep models, dataset distillation has emerged as a promising approach for constructing compact synthetic datasets that retain the knowledge of their large original counterparts. However, traditional optimization-based methods often suffer from high computational overhead, memory constraints, and the generation of unrealistic, noise-like images with limited architectural generalization. Recent non-optimization methods alleviate some of these issues by constructing distilled data from real image patches, but the used rigid patch selection strategies can still discard critical information about the main objects. To solve this problem, we first leverage Grounded SAM2 to identify foreground objects and compute per-image foreground occupancy, from which we derive a category-wise patch decision threshold. Guided by these thresholds, we design a dynamic patch selection strategy that, for each image, either selects the most informative patch from multiple candidates or directly resizes the full image when the foreground dominates. This dual-path mechanism preserves more key information about the main objects while reducing redundant background content. Extensive experiments on multiple benchmarks show that the proposed method consistently improves distillation performance over existing approaches, producing more informative and representative distilled datasets and enhancing robustness across different architectures and image compositions.
Abstract:We propose a novel continual self-supervised learning (CSSL) framework for simultaneously learning diverse features from multi-window-obtained chest computed tomography (CT) images and ensuring data privacy. Achieving a robust and highly generalizable model in medical image diagnosis is challenging, mainly because of issues, such as the scarcity of large-scale, accurately annotated datasets and domain shifts inherent to dynamic healthcare environments. Specifically, in chest CT, these domain shifts often arise from differences in window settings, which are optimized for distinct clinical purposes. Previous CSSL frameworks often mitigated domain shift by reusing past data, a typically impractical approach owing to privacy constraints. Our approach addresses these challenges by effectively capturing the relationship between previously learned knowledge and new information across different training stages through continual pretraining on unlabeled images. Specifically, by incorporating a latent replay-based mechanism into CSSL, our method mitigates catastrophic forgetting due to domain shifts during continual pretraining while ensuring data privacy. Additionally, we introduce a feature distillation technique that integrates Wasserstein distance-based knowledge distillation (WKD) and batch-knowledge ensemble (BKE), enhancing the ability of the model to learn meaningful, domain-shift-robust representations. Finally, we validate our approach using chest CT images obtained across two different window settings, demonstrating superior performance compared with other approaches.
Abstract:Mixture-of-Experts (MoE) has emerged as a powerful framework for multi-task learning (MTL). However, existing MoE-MTL methods often rely on single-task pretrained backbones and suffer from redundant adaptation and inefficient knowledge sharing during the transition from single-task to multi-task learning (STL to MTL). To address these limitations, we propose adaptive shared experts (ASE) within a low-rank adaptation (LoRA) based MoE, where shared experts are assigned router-computed gating weights jointly normalized with sparse experts. This design facilitates STL to MTL transition, enhances expert specialization, and cooperation. Furthermore, we incorporate fine-grained experts by increasing the number of LoRA experts while proportionally reducing their rank, enabling more effective knowledge sharing under a comparable parameter budget. Extensive experiments on the PASCAL-Context benchmark, under unified training settings, demonstrate that ASE consistently improves performance across diverse configurations and validates the effectiveness of fine-grained designs for MTL.
Abstract:This paper presents Objectness SIMilarity (OSIM), a novel evaluation metric for 3D scenes that explicitly focuses on "objects," which are fundamental units of human visual perception. Existing metrics assess overall image quality, leading to discrepancies with human perception. Inspired by neuropsychological insights, we hypothesize that human recognition of 3D scenes fundamentally involves attention to individual objects. OSIM enables object-centric evaluations by leveraging an object detection model and its feature representations to quantify the "objectness" of each object in the scene. Our user study demonstrates that OSIM aligns more closely with human perception compared to existing metrics. We also analyze the characteristics of OSIM using various approaches. Moreover, we re-evaluate recent 3D reconstruction and generation models under a standardized experimental setup to clarify advancements in this field. The code is available at https://github.com/Objectness-Similarity/OSIM.




Abstract:We propose a novel continual self-supervised learning method (CSSL) considering medical domain knowledge in chest CT images. Our approach addresses the challenge of sequential learning by effectively capturing the relationship between previously learned knowledge and new information at different stages. By incorporating an enhanced DER into CSSL and maintaining both diversity and representativeness within the rehearsal buffer of DER, the risk of data interference during pretraining is reduced, enabling the model to learn more richer and robust feature representations. In addition, we incorporate a mixup strategy and feature distillation to further enhance the model's ability to learn meaningful representations. We validate our method using chest CT images obtained under two different imaging conditions, demonstrating superior performance compared to state-of-the-art methods.




Abstract:Dataset distillation is an effective technique for reducing the cost and complexity of model training while maintaining performance by compressing large datasets into smaller, more efficient versions. In this paper, we present a novel generative dataset distillation method that can improve the accuracy of aligning prediction logits. Our approach integrates self-knowledge distillation to achieve more precise distribution matching between the synthetic and original data, thereby capturing the overall structure and relationships within the data. To further improve the accuracy of alignment, we introduce a standardization step on the logits before performing distribution matching, ensuring consistency in the range of logits. Through extensive experiments, we demonstrate that our method outperforms existing state-of-the-art methods, resulting in superior distillation performance.




Abstract:Knowledge Graphs (KGs) represent relationships between entities in a graph structure and have been widely studied as promising tools for realizing recommendations that consider the accurate content information of items. However, traditional KG-based recommendation methods face fundamental challenges: insufficient consideration of temporal information and poor performance in cold-start scenarios. On the other hand, Large Language Models (LLMs) can be considered databases with a wealth of knowledge learned from the web data, and they have recently gained attention due to their potential application as recommendation systems. Although approaches that treat LLMs as recommendation systems can leverage LLMs' high recommendation literacy, their input token limitations make it impractical to consider the entire recommendation domain dataset and result in scalability issues. To address these challenges, we propose a LLM's Intuition-aware Knowledge graph Reasoning model (LIKR). Our main idea is to treat LLMs as reasoners that output intuitive exploration strategies for KGs. To integrate the knowledge of LLMs and KGs, we trained a recommendation agent through reinforcement learning using a reward function that integrates different recommendation strategies, including LLM's intuition and KG embeddings. By incorporating temporal awareness through prompt engineering and generating textual representations of user preferences from limited interactions, LIKR can improve recommendation performance in cold-start scenarios. Furthermore, LIKR can avoid scalability issues by using KGs to represent recommendation domain datasets and limiting the LLM's output to KG exploration strategies. Experiments on real-world datasets demonstrate that our model outperforms state-of-the-art recommendation methods in cold-start sequential recommendation scenarios.
Abstract:Conventional medical artificial intelligence (AI) models face barriers in clinical application and ethical issues owing to their inability to handle the privacy-sensitive characteristics of medical data. We present a novel personalized federated learning (pFL) method for medical visual question answering (VQA) models, addressing privacy reliability challenges in the medical domain. Our method introduces learnable prompts into a Transformer architecture to efficiently train it on diverse medical datasets without massive computational costs. Then we introduce a reliable client VQA model that incorporates Dempster-Shafer evidence theory to quantify uncertainty in predictions, enhancing the model's reliability. Furthermore, we propose a novel inter-client communication mechanism that uses maximum likelihood estimation to balance accuracy and uncertainty, fostering efficient integration of insights across clients.




Abstract:We propose a new strategy called think twice before recognizing to improve fine-grained traffic sign recognition (TSR). Fine-grained TSR in the wild is difficult due to the complex road conditions, and existing approaches particularly struggle with cross-country TSR when data is lacking. Our strategy achieves effective fine-grained TSR by stimulating the multiple-thinking capability of large multimodal models (LMM). We introduce context, characteristic, and differential descriptions to design multiple thinking processes for the LMM. The context descriptions with center coordinate prompt optimization help the LMM to locate the target traffic sign in the original road images containing multiple traffic signs and filter irrelevant answers through the proposed prior traffic sign hypothesis. The characteristic description is based on few-shot in-context learning of template traffic signs, which decreases the cross-domain difference and enhances the fine-grained recognition capability of the LMM. The differential descriptions of similar traffic signs optimize the multimodal thinking capability of the LMM. The proposed method is independent of training data and requires only simple and uniform instructions. We conducted extensive experiments on three benchmark datasets and two real-world datasets from different countries, and the proposed method achieves state-of-the-art TSR results on all five datasets.