Abstract:Dimensionality reduction (DR) offers a useful representation of complex high-dimensional data. Recent DR methods focus on hyperbolic geometry to derive a faithful low-dimensional representation of hierarchical data. However, existing methods are based on neighbor embedding, frequently ruining the continual relation of the hierarchies. This paper presents hyperboloid Gaussian process (GP) latent variable models (hGP-LVMs) to embed high-dimensional hierarchical data with implicit continuity via nonparametric estimation. We adopt generative modeling using the GP, which brings effective hierarchical embedding and executes ill-posed hyperparameter tuning. This paper presents three variants that employ original point, sparse point, and Bayesian estimations. We establish their learning algorithms by incorporating the Riemannian optimization and active approximation scheme of GP-LVM. For Bayesian inference, we further introduce the reparameterization trick to realize Bayesian latent variable learning. In the last part of this paper, we apply hGP-LVMs to several datasets and show their ability to represent high-dimensional hierarchies in low-dimensional spaces.
Abstract:We propose a new strategy called think twice before recognizing to improve fine-grained traffic sign recognition (TSR). Fine-grained TSR in the wild is difficult due to the complex road conditions, and existing approaches particularly struggle with cross-country TSR when data is lacking. Our strategy achieves effective fine-grained TSR by stimulating the multiple-thinking capability of large multimodal models (LMM). We introduce context, characteristic, and differential descriptions to design multiple thinking processes for the LMM. The context descriptions with center coordinate prompt optimization help the LMM to locate the target traffic sign in the original road images containing multiple traffic signs and filter irrelevant answers through the proposed prior traffic sign hypothesis. The characteristic description is based on few-shot in-context learning of template traffic signs, which decreases the cross-domain difference and enhances the fine-grained recognition capability of the LMM. The differential descriptions of similar traffic signs optimize the multimodal thinking capability of the LMM. The proposed method is independent of training data and requires only simple and uniform instructions. We conducted extensive experiments on three benchmark datasets and two real-world datasets from different countries, and the proposed method achieves state-of-the-art TSR results on all five datasets.
Abstract:Recent multimodal large language models (MLLM) such as GPT-4o and GPT-4v have shown great potential in autonomous driving. In this paper, we propose a cross-domain few-shot in-context learning method based on the MLLM for enhancing traffic sign recognition (TSR). We first construct a traffic sign detection network based on Vision Transformer Adapter and an extraction module to extract traffic signs from the original road images. To reduce the dependence on training data and improve the performance stability of cross-country TSR, we introduce a cross-domain few-shot in-context learning method based on the MLLM. To enhance MLLM's fine-grained recognition ability of traffic signs, the proposed method generates corresponding description texts using template traffic signs. These description texts contain key information about the shape, color, and composition of traffic signs, which can stimulate the ability of MLLM to perceive fine-grained traffic sign categories. By using the description texts, our method reduces the cross-domain differences between template and real traffic signs. Our approach requires only simple and uniform textual indications, without the need for large-scale traffic sign images and labels. We perform comprehensive evaluations on the German traffic sign recognition benchmark dataset, the Belgium traffic sign dataset, and two real-world datasets taken from Japan. The experimental results show that our method significantly enhances the TSR performance.
Abstract:This paper proposes a novel framework to reinforce classification models using language-guided generated counterfactual images. Deep learning classification models are often trained using datasets that mirror real-world scenarios. In this training process, because learning is based solely on correlations with labels, there is a risk that models may learn spurious relationships, such as an overreliance on features not central to the subject, like background elements in images. However, due to the black-box nature of the decision-making process in deep learning models, identifying and addressing these vulnerabilities has been particularly challenging. We introduce a novel framework for reinforcing the classification models, which consists of a two-stage process. First, we identify model weaknesses by testing the model using the counterfactual image dataset, which is generated by perturbed image captions. Subsequently, we employ the counterfactual images as an augmented dataset to fine-tune and reinforce the classification model. Through extensive experiments on several classification models across various datasets, we revealed that fine-tuning with a small set of counterfactual images effectively strengthens the model.
Abstract:In this paper, we propose a new dataset distillation method that considers balancing global structure and local details when distilling the information from a large dataset into a generative model. Dataset distillation has been proposed to reduce the size of the required dataset when training models. The conventional dataset distillation methods face the problem of long redeployment time and poor cross-architecture performance. Moreover, previous methods focused too much on the high-level semantic attributes between the synthetic dataset and the original dataset while ignoring the local features such as texture and shape. Based on the above understanding, we propose a new method for distilling the original image dataset into a generative model. Our method involves using a conditional generative adversarial network to generate the distilled dataset. Subsequently, we ensure balancing global structure and local details in the distillation process, continuously optimizing the generator for more information-dense dataset generation.
Abstract:This study presents a novel approach to Generative Class Incremental Learning (GCIL) by introducing the forgetting mechanism, aimed at dynamically managing class information for better adaptation to streaming data. GCIL is one of the hot topics in the field of computer vision, and this is considered one of the crucial tasks in society, specifically the continual learning of generative models. The ability to forget is a crucial brain function that facilitates continual learning by selectively discarding less relevant information for humans. However, in the field of machine learning models, the concept of intentionally forgetting has not been extensively investigated. In this study we aim to bridge this gap by incorporating the forgetting mechanisms into GCIL, thereby examining their impact on the models' ability to learn in continual learning. Through our experiments, we have found that integrating the forgetting mechanisms significantly enhances the models' performance in acquiring new knowledge, underscoring the positive role that strategic forgetting plays in the process of continual learning.
Abstract:This paper presents a few-shot personalized saliency prediction using tensor-to-matrix regression for preserving the structural global information of personalized saliency maps (PSMs). In contrast to a general saliency map, a PSM has been great potential since its map indicates the person-specific visual attention that is useful for obtaining individual visual preferences from heterogeneity of gazed areas. The PSM prediction is needed for acquiring the PSM for the unseen image, but its prediction is still a challenging task due to the complexity of individual gaze patterns. For recognizing individual gaze patterns from the limited amount of eye-tracking data, the previous methods adopt the similarity of gaze tendency between persons. However, in the previous methods, the PSMs are vectorized for the prediction model. In this way, the structural global information of the PSMs corresponding to the image is ignored. For automatically revealing the relationship between PSMs, we focus on the tensor-based regression model that can preserve the structural information of PSMs, and realize the improvement of the prediction accuracy. In the experimental results, we confirm the proposed method including the tensor-based regression outperforms the comparative methods.