Abstract:Dataset distillation is an effective technique for reducing the cost and complexity of model training while maintaining performance by compressing large datasets into smaller, more efficient versions. In this paper, we present a novel generative dataset distillation method that can improve the accuracy of aligning prediction logits. Our approach integrates self-knowledge distillation to achieve more precise distribution matching between the synthetic and original data, thereby capturing the overall structure and relationships within the data. To further improve the accuracy of alignment, we introduce a standardization step on the logits before performing distribution matching, ensuring consistency in the range of logits. Through extensive experiments, we demonstrate that our method outperforms existing state-of-the-art methods, resulting in superior distillation performance.
Abstract:In this paper, we propose a new dataset distillation method that considers balancing global structure and local details when distilling the information from a large dataset into a generative model. Dataset distillation has been proposed to reduce the size of the required dataset when training models. The conventional dataset distillation methods face the problem of long redeployment time and poor cross-architecture performance. Moreover, previous methods focused too much on the high-level semantic attributes between the synthetic dataset and the original dataset while ignoring the local features such as texture and shape. Based on the above understanding, we propose a new method for distilling the original image dataset into a generative model. Our method involves using a conditional generative adversarial network to generate the distilled dataset. Subsequently, we ensure balancing global structure and local details in the distillation process, continuously optimizing the generator for more information-dense dataset generation.