Knowledge Graphs (KGs) represent relationships between entities in a graph structure and have been widely studied as promising tools for realizing recommendations that consider the accurate content information of items. However, traditional KG-based recommendation methods face fundamental challenges: insufficient consideration of temporal information and poor performance in cold-start scenarios. On the other hand, Large Language Models (LLMs) can be considered databases with a wealth of knowledge learned from the web data, and they have recently gained attention due to their potential application as recommendation systems. Although approaches that treat LLMs as recommendation systems can leverage LLMs' high recommendation literacy, their input token limitations make it impractical to consider the entire recommendation domain dataset and result in scalability issues. To address these challenges, we propose a LLM's Intuition-aware Knowledge graph Reasoning model (LIKR). Our main idea is to treat LLMs as reasoners that output intuitive exploration strategies for KGs. To integrate the knowledge of LLMs and KGs, we trained a recommendation agent through reinforcement learning using a reward function that integrates different recommendation strategies, including LLM's intuition and KG embeddings. By incorporating temporal awareness through prompt engineering and generating textual representations of user preferences from limited interactions, LIKR can improve recommendation performance in cold-start scenarios. Furthermore, LIKR can avoid scalability issues by using KGs to represent recommendation domain datasets and limiting the LLM's output to KG exploration strategies. Experiments on real-world datasets demonstrate that our model outperforms state-of-the-art recommendation methods in cold-start sequential recommendation scenarios.