Abstract:Accurate prediction of pedestrians' future motions is critical for intelligent driving systems. Developing models for this task requires rich datasets containing diverse sets of samples. However, the existing naturalistic trajectory prediction datasets are generally imbalanced in favor of simpler samples and lack challenging scenarios. Such a long-tail effect causes prediction models to underperform on the tail portion of the data distribution containing safety-critical scenarios. Previous methods tackle the long-tail problem using methods such as contrastive learning and class-conditioned hypernetworks. These approaches, however, are not modular and cannot be applied to many machine learning architectures. In this work, we propose a modular model-agnostic framework for trajectory prediction that leverages a specialized mixture of experts. In our approach, each expert is trained with a specialized skill with respect to a particular part of the data. To produce predictions, we utilise a router network that selects the best expert by generating relative confidence scores. We conduct experimentation on common pedestrian trajectory prediction datasets and show that besides achieving state-of-the-art performance, our method significantly performs better on long-tail scenarios. We further conduct ablation studies to highlight the contribution of different proposed components.
Abstract:Road user trajectory prediction in dynamic environments is a challenging but crucial task for various applications, such as autonomous driving. One of the main challenges in this domain is the multimodal nature of future trajectories stemming from the unknown yet diverse intentions of the agents. Diffusion models have shown to be very effective in capturing such stochasticity in prediction tasks. However, these models involve many computationally expensive denoising steps and sampling operations that make them a less desirable option for real-time safety-critical applications. To this end, we present a novel framework that leverages diffusion models for predicting future trajectories in a computationally efficient manner. To minimize the computational bottlenecks in iterative sampling, we employ an efficient sampling mechanism that allows us to maximize the number of sampled trajectories for improved accuracy while maintaining inference time in real time. Moreover, we propose a scoring mechanism to select the most plausible trajectories by assigning relative ranks. We show the effectiveness of our approach by conducting empirical evaluations on common pedestrian (UCY/ETH) and autonomous driving (nuScenes) benchmark datasets on which our model achieves state-of-the-art performance on several subsets and metrics.
Abstract:Perimeter control maintains high traffic efficiency within protected regions by controlling transfer flows among regions to ensure that their traffic densities are below critical values. Existing approaches can be categorized as either model-based or model-free, depending on whether they rely on network transmission models (NTMs) and macroscopic fundamental diagrams (MFDs). Although model-based approaches are more data efficient and have performance guarantees, they are inherently prone to model bias and inaccuracy. For example, NTMs often become imprecise for a large number of protected regions, and MFDs can exhibit scatter and hysteresis that are not captured in existing model-based works. Moreover, no existing studies have employed reinforcement learning for homogeneous flow rate optimization in microscopic simulation, where spatial characteristics, vehicle-level information, and metering realizations -- often overlooked in macroscopic simulations -- are taken into account. To circumvent issues of model-based approaches and macroscopic simulation, we propose a model-free deep reinforcement learning approach that optimizes the flow rate homogeneously at the perimeter at the microscopic level. Results demonstrate that our model-free reinforcement learning approach without any knowledge of NTMs or MFDs can compete and match the performance of a model-based approach, and exhibits enhanced generalizability and scalability.