Abstract:Current approaches to novelty or anomaly detection are based on deep neural networks. Despite their effectiveness, neural networks are also vulnerable to imperceptible deformations of the input data. This is a serious issue in critical applications, or when data alterations are generated by an adversarial attack. While this is a known problem that has been studied in recent years for the case of supervised learning, the case of novelty detection has received very limited attention. Indeed, in this latter setting the learning is typically unsupervised because outlier data is not available during training, and new approaches for this case need to be investigated. We propose a new prior that aims at learning a robust likelihood for the novelty test, as a defense against attacks. We also integrate the same prior with a state-of-the-art novelty detection approach. Because of the geometric properties of that approach, the resulting robust training is computationally very efficient. An initial evaluation of the method indicates that it is effective at improving performance with respect to the standard models in the absence and presence of attacks.
Abstract:Mammography-based screening has helped reduce the breast cancer mortality rate, but has also been associated with potential harms due to low specificity, leading to unnecessary exams or procedures, and low sensitivity. Digital breast tomosynthesis (DBT) improves on conventional mammography by increasing both sensitivity and specificity and is becoming common in clinical settings. However, deep learning (DL) models have been developed mainly on conventional 2D full-field digital mammography (FFDM) or scanned film images. Due to a lack of large annotated DBT datasets, it is difficult to train a model on DBT from scratch. In this work, we present methods to generalize a model trained on FFDM images to DBT images. In particular, we use average histogram matching (HM) and DL fine-tuning methods to generalize a FFDM model to the 2D maximum intensity projection (MIP) of DBT images. In the proposed approach, the differences between the FFDM and DBT domains are reduced via HM and then the base model, which was trained on abundant FFDM images, is fine-tuned. When evaluating on image patches extracted around identified findings, we are able to achieve similar areas under the receiver operating characteristic curve (ROC AUC) of $\sim 0.9$ for FFDM and $\sim 0.85$ for MIP images, as compared to a ROC AUC of $\sim 0.75$ when tested directly on MIP images.
Abstract:Novelty detection is the problem of identifying whether a new data point is considered to be an inlier or an outlier. We assume that training data is available to describe only the inlier distribution. Recent approaches primarily leverage deep encoder-decoder network architectures to compute a reconstruction error that is used to either compute a novelty score or to train a one-class classifier. While we too leverage a novel network of that kind, we take a probabilistic approach and effectively compute how likely is that a sample was generated by the inlier distribution. We achieve this with two main contributions. First, we make the computation of the novelty probability feasible because we linearize the parameterized manifold capturing the underlying structure of the inlier distribution, and show how the probability factorizes and can be computed with respect to local coordinates of the manifold tangent space. Second, we improved the training of the autoencoder network. An extensive set of results show that the approach achieves state-of-the-art results on several benchmark datasets.