Abstract:In recent years, Large Language Models (LLMs) through Transformer structures have dominated many machine learning tasks, especially text processing. However, these models require massive amounts of data for training and induce high resource requirements, particularly in terms of the large number of Floating Point Operations (FLOPs) and the high amounts of memory needed. To fine-tune such a model in a parameter-efficient way, techniques like Adapter or LoRA have been developed. However, we observe that the application of LoRA, when used in federated learning (FL), while still being parameter-efficient, is memory and FLOP inefficient. Based on that observation, we develop a novel layer finetuning scheme that allows devices in cross-device FL to make use of pretrained neural networks (NNs) while adhering to given resource constraints. We show that our presented scheme outperforms the current state of the art when dealing with homogeneous or heterogeneous computation and memory constraints and is on par with LoRA regarding limited communication, thereby achieving significantly higher accuracies in FL training.
Abstract:The Intelligent Transportation System (ITS) environment is known to be dynamic and distributed, where participants (vehicle users, operators, etc.) have multiple, changing and possibly conflicting objectives. Although Reinforcement Learning (RL) algorithms are commonly applied to optimize ITS applications such as resource management and offloading, most RL algorithms focus on single objectives. In many situations, converting a multi-objective problem into a single-objective one is impossible, intractable or insufficient, making such RL algorithms inapplicable. We propose a multi-objective, multi-agent reinforcement learning (MARL) algorithm with high learning efficiency and low computational requirements, which automatically triggers adaptive few-shot learning in a dynamic, distributed and noisy environment with sparse and delayed reward. We test our algorithm in an ITS environment with edge cloud computing. Empirical results show that the algorithm is quick to adapt to new environments and performs better in all individual and system metrics compared to the state-of-the-art benchmark. Our algorithm also addresses various practical concerns with its modularized and asynchronous online training method. In addition to the cloud simulation, we test our algorithm on a single-board computer and show that it can make inference in 6 milliseconds.
Abstract:Beyond 5G and 6G networks are expected to support new and challenging use cases and applications that depend on a certain level of Quality of Service (QoS) to operate smoothly. Predicting the QoS in a timely manner is of high importance, especially for safety-critical applications as in the case of vehicular communications. Although until recent years the QoS prediction has been carried out by centralized Artificial Intelligence (AI) solutions, a number of privacy, computational, and operational concerns have emerged. Alternative solutions have been surfaced (e.g. Split Learning, Federated Learning), distributing AI tasks of reduced complexity across nodes, while preserving the privacy of the data. However, new challenges rise when it comes to scalable distributed learning approaches, taking into account the heterogeneous nature of future wireless networks. The current work proposes DISTINQT, a privacy-aware distributed learning framework for QoS prediction. Our framework supports multiple heterogeneous nodes, in terms of data types and model architectures, by sharing computations across them. This, enables the incorporation of diverse knowledge into a sole learning process that will enhance the robustness and generalization capabilities of the final QoS prediction model. DISTINQT also contributes to data privacy preservation by encoding any raw input data into a non-linear latent representation before any transmission. Evaluation results showcase that our framework achieves a statistically identical performance compared to its centralized version and an average performance improvement of up to 65% against six state-of-the-art centralized baseline solutions in the Tele-Operated Driving use case.
Abstract:Progressing towards a new era of Artificial Intelligence (AI) - enabled wireless networks, concerns regarding the environmental impact of AI have been raised both in industry and academia. Federated Learning (FL) has emerged as a key privacy preserving decentralized AI technique. Despite efforts currently being made in FL, its environmental impact is still an open problem. Targeting the minimization of the overall energy consumption of an FL process, we propose the orchestration of computational and communication resources of the involved devices to minimize the total energy required, while guaranteeing a certain performance of the model. To this end, we propose a Soft Actor Critic Deep Reinforcement Learning (DRL) solution, where a penalty function is introduced during training, penalizing the strategies that violate the constraints of the environment, and ensuring a safe RL process. A device level synchronization method, along with a computationally cost effective FL environment are proposed, with the goal of further reducing the energy consumption and communication overhead. Evaluation results show the effectiveness of the proposed scheme compared to four state-of-the-art baseline solutions in both static and dynamic environments, achieving a decrease of up to 94% in the total energy consumption.
Abstract:With an increasing number of smart devices like internet of things (IoT) devices deployed in the field, offloadingtraining of neural networks (NNs) to a central server becomes more and more infeasible. Recent efforts toimprove users' privacy have led to on-device learning emerging as an alternative. However, a model trainedonly on a single device, using only local data, is unlikely to reach a high accuracy. Federated learning (FL)has been introduced as a solution, offering a privacy-preserving trade-off between communication overheadand model accuracy by sharing knowledge between devices but disclosing the devices' private data. Theapplicability and the benefit of applying baseline FL are, however, limited in many relevant use cases dueto the heterogeneity present in such environments. In this survey, we outline the heterogeneity challengesFL has to overcome to be widely applicable in real-world applications. We especially focus on the aspect ofcomputation heterogeneity among the participating devices and provide a comprehensive overview of recentworks on heterogeneity-aware FL. We discuss two groups: works that adapt the NN architecture and worksthat approach heterogeneity on a system level, covering Federated Averaging (FedAvg), distillation, and splitlearning-based approaches, as well as synchronous and asynchronous aggregation schemes.
Abstract:Federated Learning (FL) has emerged as a decentralized technique, where contrary to traditional centralized approaches, devices perform a model training in a collaborative manner, while preserving data privacy. Despite the existing efforts made in FL, its environmental impact is still under investigation, since several critical challenges regarding its applicability to wireless networks have been identified. Towards mitigating the carbon footprint of FL, the current work proposes a Genetic Algorithm (GA) approach, targeting the minimization of both the overall energy consumption of an FL process and any unnecessary resource utilization, by orchestrating the computational and communication resources of the involved devices, while guaranteeing a certain FL model performance target. A penalty function is introduced in the offline phase of the GA that penalizes the strategies that violate the constraints of the environment, ensuring a safe GA process. Evaluation results show the effectiveness of the proposed scheme compared to two state-of-the-art baseline solutions, achieving a decrease of up to 83% in the total energy consumption.
Abstract:Federated learning (FL) is usually performed on resource-constrained edge devices, e.g., with limited memory for the computation. If the required memory to train a model exceeds this limit, the device will be excluded from the training. This can lead to a lower accuracy as valuable data and computation resources are excluded from training, also causing bias and unfairness. The FL training process should be adjusted to such constraints. The state-of-the-art techniques propose training subsets of the FL model at constrained devices, reducing their resource requirements for training. But these techniques largely limit the co-adaptation among parameters of the model and are highly inefficient, as we show: it is actually better to train a smaller (less accurate) model by the system where all the devices can train the model end-to-end, than applying such techniques. We propose a new method that enables successive freezing and training of the parameters of the FL model at devices, reducing the training's resource requirements at the devices, while still allowing enough co-adaptation between parameters. We show through extensive experimental evaluation that our technique greatly improves the accuracy of the trained model (by 52.4 p.p.) compared with the state of the art, efficiently aggregating the computation capacity available on distributed devices.
Abstract:Federated Learning (FL) is an emerging machine learning technique that enables distributed model training across data silos or edge devices without data sharing. Yet, FL inevitably introduces inefficiencies compared to centralized model training, which will further increase the already high energy usage and associated carbon emissions of machine learning in the future. Although the scheduling of workloads based on the availability of low-carbon energy has received considerable attention in recent years, it has not yet been investigated in the context of FL. However, FL is a highly promising use case for carbon-aware computing, as training jobs constitute of energy-intensive batch processes scheduled in geo-distributed environments. We propose FedZero, a FL system that operates exclusively on renewable excess energy and spare capacity of compute infrastructure to effectively reduce the training's operational carbon emissions to zero. Based on energy and load forecasts, FedZero leverages the spatio-temporal availability of excess energy by cherry-picking clients for fast convergence and fair participation. Our evaluation, based on real solar and load traces, shows that FedZero converges considerably faster under the mentioned constraints than state-of-the-art approaches, is highly scalable, and is robust against forecasting errors.
Abstract:We formulate offloading of computational tasks from a dynamic group of mobile agents (e.g., cars) as decentralized decision making among autonomous agents. We design an interaction mechanism that incentivizes such agents to align private and system goals by balancing between competition and cooperation. In the static case, the mechanism provably has Nash equilibria with optimal resource allocation. In a dynamic environment, this mechanism's requirement of complete information is impossible to achieve. For such environments, we propose a novel multi-agent online learning algorithm that learns with partial, delayed and noisy state information, thus greatly reducing information need. Our algorithm is also capable of learning from long-term and sparse reward signals with varying delay. Empirical results from the simulation of a V2X application confirm that through learning, agents with the learning algorithm significantly improve both system and individual performance, reducing up to 30% of offloading failure rate, communication overhead and load variation, increasing computation resource utilization and fairness. Results also confirm the algorithm's good convergence and generalization property in different environments.
Abstract:Performance of vehicle-to-vehicle (V2V) communications depends highly on the employed scheduling approach. While centralized network schedulers offer high V2V communication reliability, their operation is conventionally restricted to areas with full cellular network coverage. In contrast, in out-of-cellular-coverage areas, comparatively inefficient distributed radio resource management is used. To exploit the benefits of the centralized approach for enhancing the reliability of V2V communications on roads lacking cellular coverage, we propose VRLS (Vehicular Reinforcement Learning Scheduler), a centralized scheduler that proactively assigns resources for out-of-coverage V2V communications \textit{before} vehicles leave the cellular network coverage. By training in simulated vehicular environments, VRLS can learn a scheduling policy that is robust and adaptable to environmental changes, thus eliminating the need for targeted (re-)training in complex real-life environments. We evaluate the performance of VRLS under varying mobility, network load, wireless channel, and resource configurations. VRLS outperforms the state-of-the-art distributed scheduling algorithm in zones without cellular network coverage by reducing the packet error rate by half in highly loaded conditions and achieving near-maximum reliability in low-load scenarios.