Abstract:Image retrieval methods rely on metric learning to train backbone feature extraction models that can extract discriminant queries and reference (gallery) feature representations for similarity matching. Although state-of-the-art accuracy has improved considerably with the advent of deep learning (DL) models trained on large datasets, image retrieval remains challenging in many real-world video analytics and surveillance applications, e.g., person re-identification. Using the Euclidean space for matching limits the performance in real-world applications due to the curse of dimensionality, overfitting, and sensitivity to noisy data. We argue that the feature dissimilarity space is more suitable for similarity matching, and propose a dichotomy transformation to project query and reference embeddings into a single embedding in the dissimilarity space. We also advocate for end-to-end training of a backbone and binary classification models for pair-wise matching. As opposed to comparing the distance between queries and reference embeddings, we show the benefits of classifying the single dissimilarity space embedding (as similar or dissimilar), especially when trained end-to-end. We propose a method to train the max-margin classifier together with the backbone feature extractor by applying constraints to the L2 norm of the classifier weights along with the hinge loss. Our extensive experiments on challenging image retrieval datasets and using diverse feature extraction backbones highlight the benefits of similarity matching in the dissimilarity space. In particular, when jointly training the feature extraction backbone and regularised classifier for matching, the dissimilarity space provides a higher level of accuracy.
Abstract:Dynamic Selection (DS), where base classifiers are chosen from a classifier's pool for each new instance at test time, has shown to be highly effective in pattern recognition. However, instability and redundancy in the classifier pools can impede computational efficiency and accuracy in dynamic ensemble selection. This paper introduces a meta-learning recommendation system (MLRS) to recommend the optimal pool generation scheme for DES methods tailored to individual datasets. The system employs a meta-model built from dataset meta-features to predict the most suitable pool generation scheme and DES method for a given dataset. Through an extensive experimental study encompassing 288 datasets, we demonstrate that this meta-learning recommendation system outperforms traditional fixed pool or DES method selection strategies, highlighting the efficacy of a meta-learning approach in refining DES method selection. The source code, datasets, and supplementary results can be found in this project's GitHub repository: https://github.com/Menelau/MLRS-PDS.
Abstract:A key challenge in visible-infrared person re-identification (V-I ReID) is training a backbone model capable of effectively addressing the significant discrepancies across modalities. State-of-the-art methods that generate a single intermediate bridging domain are often less effective, as this generated domain may not adequately capture sufficient common discriminant information. This paper introduces the Bidirectional Multi-step Domain Generalization (BMDG), a novel approach for unifying feature representations across diverse modalities. BMDG creates multiple virtual intermediate domains by finding and aligning body part features extracted from both I and V modalities. Indeed, BMDG aims to reduce the modality gaps in two steps. First, it aligns modalities in feature space by learning shared and modality-invariant body part prototypes from V and I images. Then, it generalizes the feature representation by applying bidirectional multi-step learning, which progressively refines feature representations in each step and incorporates more prototypes from both modalities. In particular, our method minimizes the cross-modal gap by identifying and aligning shared prototypes that capture key discriminative features across modalities, then uses multiple bridging steps based on this information to enhance the feature representation. Experiments conducted on challenging V-I ReID datasets indicate that our BMDG approach outperforms state-of-the-art part-based models or methods that generate an intermediate domain from V-I person ReID.
Abstract:Reconstructing an avatar from a portrait image has many applications in multimedia, but remains a challenging research problem. Extracting reflectance maps and geometry from one image is ill-posed: recovering geometry is a one-to-many mapping problem and reflectance and light are difficult to disentangle. Accurate geometry and reflectance can be captured under the controlled conditions of a light stage, but it is costly to acquire large datasets in this fashion. Moreover, training solely with this type of data leads to poor generalization with in-the-wild images. This motivates the introduction of MoSAR, a method for 3D avatar generation from monocular images. We propose a semi-supervised training scheme that improves generalization by learning from both light stage and in-the-wild datasets. This is achieved using a novel differentiable shading formulation. We show that our approach effectively disentangles the intrinsic face parameters, producing relightable avatars. As a result, MoSAR estimates a richer set of skin reflectance maps, and generates more realistic avatars than existing state-of-the-art methods. We also introduce a new dataset, named FFHQ-UV-Intrinsics, the first public dataset providing intrinsic face attributes at scale (diffuse, specular, ambient occlusion and translucency maps) for a total of 10k subjects. The project website and the dataset are available on the following link: https://ubisoft-laforge.github.io/character/mosar/
Abstract:Dynamic Ensemble Selection (DES) is a Multiple Classifier Systems (MCS) approach that aims to select an ensemble for each query sample during the selection phase. Even with the proposal of several DES approaches, no particular DES technique is the best choice for different problems. Thus, we hypothesize that selecting the best DES approach per query instance can lead to better accuracy. To evaluate this idea, we introduce the Post-Selection Dynamic Ensemble Selection (PS-DES) approach, a post-selection scheme that evaluates ensembles selected by several DES techniques using different metrics. Experimental results show that using accuracy as a metric to select the ensembles, PS-DES performs better than individual DES techniques. PS-DES source code is available in a GitHub repository
Abstract:Visible-infrared person re-identification seeks to retrieve images of the same individual captured over a distributed network of RGB and IR sensors. Several V-I ReID approaches directly integrate both V and I modalities to discriminate persons within a shared representation space. However, given the significant gap in data distributions between V and I modalities, cross-modal V-I ReID remains challenging. Some recent approaches improve generalization by leveraging intermediate spaces that can bridge V and I modalities, yet effective methods are required to select or generate data for such informative domains. In this paper, the Adaptive Generation of Privileged Intermediate Information training approach is introduced to adapt and generate a virtual domain that bridges discriminant information between the V and I modalities. The key motivation behind AGPI^2 is to enhance the training of a deep V-I ReID backbone by generating privileged images that provide additional information. These privileged images capture shared discriminative features that are not easily accessible within the original V or I modalities alone. Towards this goal, a non-linear generative module is trained with an adversarial objective, translating V images into intermediate spaces with a smaller domain shift w.r.t. the I domain. Meanwhile, the embedding module within AGPI^2 aims to produce similar features for both V and generated images, encouraging the extraction of features that are common to all modalities. In addition to these contributions, AGPI^2 employs adversarial objectives for adapting the intermediate images, which play a crucial role in creating a non-modality-specific space to address the large domain shifts between V and I domains. Experimental results conducted on challenging V-I ReID datasets indicate that AGPI^2 increases matching accuracy without extra computational resources during inference.
Abstract:Data normalization is an essential task when modeling a classification system. When dealing with data streams, data normalization becomes especially challenging since we may not know in advance the properties of the features, such as their minimum/maximum values, and these properties may change over time. We compare the accuracies generated by eight well-known distance functions in data streams without normalization, normalized considering the statistics of the first batch of data received, and considering the previous batch received. We argue that experimental protocols for streams that consider the full stream as normalized are unrealistic and can lead to biased and poor results. Our results indicate that using the original data stream without applying normalization, and the Canberra distance, can be a good combination when no information about the data stream is known beforehand.
Abstract:Visible-infrared person re-identification (V-I ReID) seeks to match images of individuals captured over a distributed network of RGB and IR cameras. The task is challenging due to the significant differences between V and I modalities, especially under real-world conditions, where images are corrupted by, e.g, blur, noise, and weather. Indeed, state-of-art V-I ReID models cannot leverage corrupted modality information to sustain a high level of accuracy. In this paper, we propose an efficient model for multimodal V-I ReID -- named Multimodal Middle Stream Fusion (MMSF) -- that preserves modality-specific knowledge for improved robustness to corrupted multimodal images. In addition, three state-of-art attention-based multimodal fusion models are adapted to address corrupted multimodal data in V-I ReID, allowing to dynamically balance each modality importance. Recently, evaluation protocols have been proposed to assess the robustness of ReID models under challenging real-world scenarios. However, these protocols are limited to unimodal V settings. For realistic evaluation of multimodal (and cross-modal) V-I person ReID models, we propose new challenging corrupted datasets for scenarios where V and I cameras are co-located (CL) and not co-located (NCL). Finally, the benefits of our Masking and Local Multimodal Data Augmentation (ML-MDA) strategy are explored to improve the robustness of ReID models to multimodal corruption. Our experiments on clean and corrupted versions of the SYSU-MM01, RegDB, and ThermalWORLD datasets indicate the multimodal V-I ReID models that are more likely to perform well in real-world operational conditions. In particular, our ML-MDA is an important strategy for a V-I person ReID system to sustain high accuracy and robustness when processing corrupted multimodal images. Also, our multimodal ReID model MMSF outperforms every method under CL and NCL camera scenarios.
Abstract:Dataset scaling, also known as normalization, is an essential preprocessing step in a machine learning pipeline. It is aimed at adjusting attributes scales in a way that they all vary within the same range. This transformation is known to improve the performance of classification models, but there are several scaling techniques to choose from, and this choice is not generally done carefully. In this paper, we execute a broad experiment comparing the impact of 5 scaling techniques on the performances of 20 classification algorithms among monolithic and ensemble models, applying them to 82 publicly available datasets with varying imbalance ratios. Results show that the choice of scaling technique matters for classification performance, and the performance difference between the best and the worst scaling technique is relevant and statistically significant in most cases. They also indicate that choosing an inadequate technique can be more detrimental to classification performance than not scaling the data at all. We also show how the performance variation of an ensemble model, considering different scaling techniques, tends to be dictated by that of its base model. Finally, we discuss the relationship between a model's sensitivity to the choice of scaling technique and its performance and provide insights into its applicability on different model deployment scenarios. Full results and source code for the experiments in this paper are available in a GitHub repository.\footnote{https://github.com/amorimlb/scaling\_matters}
Abstract:The re-identification (ReID) of individuals over a complex network of cameras is a challenging task, especially under real-world surveillance conditions. Several deep learning models have been proposed for visible-infrared (V-I) person ReID to recognize individuals from images captured using RGB and IR cameras. However, performance may decline considerably if RGB and IR images captured at test time are corrupted (e.g., noise, blur, and weather conditions). Although various data augmentation (DA) methods have been explored to improve the generalization capacity, these are not adapted for V-I person ReID. In this paper, a specialized DA strategy is proposed to address this multimodal setting. Given both the V and I modalities, this strategy allows to diminish the impact of corruption on the accuracy of deep person ReID models. Corruption may be modality-specific, and an additional modality often provides complementary information. Our multimodal DA strategy is designed specifically to encourage modality collaboration and reinforce generalization capability. For instance, punctual masking of modalities forces the model to select the informative modality. Local DA is also explored for advanced selection of features within and among modalities. The impact of training baseline fusion models for V-I person ReID using the proposed multimodal DA strategy is assessed on corrupted versions of the SYSU-MM01, RegDB, and ThermalWORLD datasets in terms of complexity and efficiency. Results indicate that using our strategy provides V-I ReID models the ability to exploit both shared and individual modality knowledge so they can outperform models trained with no or unimodal DA. GitHub code: https://github.com/art2611/ML-MDA.