Abstract:Data normalization is an essential task when modeling a classification system. When dealing with data streams, data normalization becomes especially challenging since we may not know in advance the properties of the features, such as their minimum/maximum values, and these properties may change over time. We compare the accuracies generated by eight well-known distance functions in data streams without normalization, normalized considering the statistics of the first batch of data received, and considering the previous batch received. We argue that experimental protocols for streams that consider the full stream as normalized are unrealistic and can lead to biased and poor results. Our results indicate that using the original data stream without applying normalization, and the Canberra distance, can be a good combination when no information about the data stream is known beforehand.
Abstract:Smart-parking solutions use sensors, cameras, and data analysis to improve parking efficiency and reduce traffic congestion. Computer vision-based methods have been used extensively in recent years to tackle the problem of parking lot management, but most of the works assume that the parking spots are manually labeled, impacting the cost and feasibility of deployment. To fill this gap, this work presents an automatic parking space detection method, which receives a sequence of images of a parking lot and returns a list of coordinates identifying the detected parking spaces. The proposed method employs instance segmentation to identify cars and, using vehicle occurrence, generate a heat map of parking spaces. The results using twelve different subsets from the PKLot and CNRPark-EXT parking lot datasets show that the method achieved an AP25 score up to 95.60\% and AP50 score up to 79.90\%.