Abstract:Despite the advances in text-to-image synthesis, particularly with diffusion models, generating visual instructions that require consistent representation and smooth state transitions of objects across sequential steps remains a formidable challenge. This paper introduces a simple, training-free framework to tackle the issues, capitalizing on the advancements in diffusion models and large language models (LLMs). Our approach systematically integrates text comprehension and image generation to ensure visual instructions are visually appealing and maintain consistency and accuracy throughout the instruction sequence. We validate the effectiveness by testing multi-step instructions and comparing the text alignment and consistency with several baselines. Our experiments show that our approach can visualize coherent and visually pleasing instructions
Abstract:Driven by scalable diffusion models trained on large-scale paired text-image datasets, text-to-image synthesis methods have shown compelling results. However, these models still fail to precisely follow the text prompt when multiple objects, attributes, and spatial compositions are involved in the prompt. In this paper, we identify the potential reasons in both the cross-attention and self-attention layers of the diffusion model. We propose two novel losses to refocus the attention maps according to a given layout during the sampling process. We perform comprehensive experiments on the DrawBench and HRS benchmarks using layouts synthesized by Large Language Models, showing that our proposed losses can be integrated easily and effectively into existing text-to-image methods and consistently improve their alignment between the generated images and the text prompts.
Abstract:Recovering the 3D structure of an object from a single image is a challenging task due to its ill-posed nature. One approach is to utilize the plentiful photos of the same object category to learn a strong 3D shape prior for the object. This approach has successfully been demonstrated by a recent work of Wu et al. (2020), which obtained impressive 3D reconstruction networks with unsupervised learning. However, their algorithm is only applicable to symmetric objects. In this paper, we eliminate the symmetry requirement with a novel unsupervised algorithm that can learn a 3D reconstruction network from a multi-image dataset. Our algorithm is more general and covers the symmetry-required scenario as a special case. Besides, we employ a novel albedo loss that improves the reconstructed details and realisticity. Our method surpasses the previous work in both quality and robustness, as shown in experiments on datasets of various structures, including single-view, multi-view, image-collection, and video sets.
Abstract:This paper introduces a method to encode the blur operators of an arbitrary dataset of sharp-blur image pairs into a blur kernel space. Assuming the encoded kernel space is close enough to in-the-wild blur operators, we propose an alternating optimization algorithm for blind image deblurring. It approximates an unseen blur operator by a kernel in the encoded space and searches for the corresponding sharp image. Unlike recent deep-learning-based methods, our system can handle unseen blur kernel, while avoiding using complicated handcrafted priors on the blur operator often found in classical methods. Due to the method's design, the encoded kernel space is fully differentiable, thus can be easily adopted in deep neural network models. Moreover, our method can be used for blur synthesis by transferring existing blur operators from a given dataset into a new domain. Finally, we provide experimental results to confirm the effectiveness of the proposed method.