Abstract:Foundation model (FM) powered agent services are regarded as a promising solution to develop intelligent and personalized applications for advancing toward Artificial General Intelligence (AGI). To achieve high reliability and scalability in deploying these agent services, it is essential to collaboratively optimize computational and communication resources, thereby ensuring effective resource allocation and seamless service delivery. In pursuit of this vision, this paper proposes a unified framework aimed at providing a comprehensive survey on deploying FM-based agent services across heterogeneous devices, with the emphasis on the integration of model and resource optimization to establish a robust infrastructure for these services. Particularly, this paper begins with exploring various low-level optimization strategies during inference and studies approaches that enhance system scalability, such as parallelism techniques and resource scaling methods. The paper then discusses several prominent FMs and investigates research efforts focused on inference acceleration, including techniques such as model compression and token reduction. Moreover, the paper also investigates critical components for constructing agent services and highlights notable intelligent applications. Finally, the paper presents potential research directions for developing real-time agent services with high Quality of Service (QoS).
Abstract:Pressure-sensitive smart textiles are widely applied in the fields of healthcare, sports monitoring, and intelligent homes. The integration of devices embedded with pressure sensing arrays is expected to enable comprehensive scene coverage and multi-device integration. However, the implementation of identity recognition, a fundamental function in this context, relies on extensive device-specific datasets due to variations in pressure distribution across different devices. To address this challenge, we propose a novel user identification method based on contrastive learning. We design two parallel branches to facilitate user identification on both new and existing devices respectively, employing supervised contrastive learning in the feature space to promote domain unification. When encountering new devices, extensive data collection efforts are not required; instead, user identification can be achieved using limited data consisting of only a few simple postures. Through experimentation with two 8-subject pressure datasets (BedPressure and ChrPressure), our proposed method demonstrates the capability to achieve user identification across 12 sitting scenarios using only a dataset containing 2 postures. Our average recognition accuracy reaches 79.05%, representing an improvement of 2.62% over the best baseline model.
Abstract:Body weight, as an essential physiological trait, is of considerable significance in many applications like body management, rehabilitation, and drug dosing for patient-specific treatments. Previous works on the body weight estimation task are mainly vision-based, using 2D/3D, depth, or infrared images, facing problems in illumination, occlusions, and especially privacy issues. The pressure mapping mattress is a non-invasive and privacy-preserving tool to obtain the pressure distribution image over the bed surface, which strongly correlates with the body weight of the lying person. To extract the body weight from this image, we propose a deep learning-based model, including a dual-branch network to extract the deep features and pose features respectively. A contrastive learning module is also combined with the deep-feature branch to help mine the mutual factors across different postures of every single subject. The two groups of features are then concatenated for the body weight regression task. To test the model's performance over different hardware and posture settings, we create a pressure image dataset of 10 subjects and 23 postures, using a self-made pressure-sensing bedsheet. This dataset, which is made public together with this paper, together with a public dataset, are used for the validation. The results show that our model outperforms the state-of-the-art algorithms over both 2 datasets. Our research constitutes an important step toward fully automatic weight estimation in both clinical and at-home practice. Our dataset is available for research purposes at: https://github.com/USTCWzy/MassEstimation.