Abstract:Synthetic data generation is one approach for sharing individual-level data. However, to meet legislative requirements, it is necessary to demonstrate that the individuals' privacy is adequately protected. There is no consolidated standard for measuring privacy in synthetic data. Through an expert panel and consensus process, we developed a framework for evaluating privacy in synthetic data. Our findings indicate that current similarity metrics fail to measure identity disclosure, and their use is discouraged. For differentially private synthetic data, a privacy budget other than close to zero was not considered interpretable. There was consensus on the importance of membership and attribute disclosure, both of which involve inferring personal information about an individual without necessarily revealing their identity. The resultant framework provides precise recommendations for metrics that address these types of disclosures effectively. Our findings further present specific opportunities for future research that can help with widespread adoption of synthetic data.
Abstract:Machine learning (ML), artificial intelligence (AI) and other modern statistical methods are providing new opportunities to operationalize previously untapped and rapidly growing sources of data for patient benefit. Whilst there is a lot of promising research currently being undertaken, the literature as a whole lacks: transparency; clear reporting to facilitate replicability; exploration for potential ethical concerns; and, clear demonstrations of effectiveness. There are many reasons for why these issues exist, but one of the most important that we provide a preliminary solution for here is the current lack of ML/AI- specific best practice guidance. Although there is no consensus on what best practice looks in this field, we believe that interdisciplinary groups pursuing research and impact projects in the ML/AI for health domain would benefit from answering a series of questions based on the important issues that exist when undertaking work of this nature. Here we present 20 questions that span the entire project life cycle, from inception, data analysis, and model evaluation, to implementation, as a means to facilitate project planning and post-hoc (structured) independent evaluation. By beginning to answer these questions in different settings, we can start to understand what constitutes a good answer, and we expect that the resulting discussion will be central to developing an international consensus framework for transparent, replicable, ethical and effective research in artificial intelligence (AI-TREE) for health.