Abstract:We develop an approach to learn an interpretable semi-parametric model of a latent continuous-time stochastic dynamical system, assuming noisy high-dimensional outputs sampled at uneven times. The dynamics are described by a nonlinear stochastic differential equation (SDE) driven by a Wiener process, with a drift evolution function drawn from a Gaussian process (GP) conditioned on a set of learnt fixed points and corresponding local Jacobian matrices. This form yields a flexible nonparametric model of the dynamics, with a representation corresponding directly to the interpretable portraits routinely employed in the study of nonlinear dynamical systems. The learning algorithm combines inference of continuous latent paths underlying observed data with a sparse variational description of the dynamical process. We demonstrate our approach on simulated data from different nonlinear dynamical systems.
Abstract:Machine learning (ML), artificial intelligence (AI) and other modern statistical methods are providing new opportunities to operationalize previously untapped and rapidly growing sources of data for patient benefit. Whilst there is a lot of promising research currently being undertaken, the literature as a whole lacks: transparency; clear reporting to facilitate replicability; exploration for potential ethical concerns; and, clear demonstrations of effectiveness. There are many reasons for why these issues exist, but one of the most important that we provide a preliminary solution for here is the current lack of ML/AI- specific best practice guidance. Although there is no consensus on what best practice looks in this field, we believe that interdisciplinary groups pursuing research and impact projects in the ML/AI for health domain would benefit from answering a series of questions based on the important issues that exist when undertaking work of this nature. Here we present 20 questions that span the entire project life cycle, from inception, data analysis, and model evaluation, to implementation, as a means to facilitate project planning and post-hoc (structured) independent evaluation. By beginning to answer these questions in different settings, we can start to understand what constitutes a good answer, and we expect that the resulting discussion will be central to developing an international consensus framework for transparent, replicable, ethical and effective research in artificial intelligence (AI-TREE) for health.
Abstract:In a common experimental setting, the behaviour of a noisy dynamical system is monitored in response to manipulations of one or more control parameters. Here, we introduce a structured model to describe parametric changes in qualitative system behaviour via stochastic bifurcation analysis. In particular, we describe an extension of Gaussian Process models of transition maps, in which the learned map is directly parametrized by its fixed points and associated local linearisations. We show that the system recovers the behaviour of a well-studied one dimensional system from little data, then learn the behaviour of a more realistic two dimensional process of mutually inhibiting neural populations.