Abstract:Context: Machine Learning (ML) is integrated into a growing number of systems for various applications. Because the performance of an ML model is highly dependent on the quality of the data it has been trained on, there is a growing interest in approaches to detect and repair data errors (i.e., data cleaning). Researchers are also exploring how ML can be used for data cleaning; hence creating a dual relationship between ML and data cleaning. To the best of our knowledge, there is no study that comprehensively reviews this relationship. Objective: This paper's objectives are twofold. First, it aims to summarize the latest approaches for data cleaning for ML and ML for data cleaning. Second, it provides future work recommendations. Method: We conduct a systematic literature review of the papers published between 2016 and 2022 inclusively. We identify different types of data cleaning activities with and for ML: feature cleaning, label cleaning, entity matching, outlier detection, imputation, and holistic data cleaning. Results: We summarize the content of 101 papers covering various data cleaning activities and provide 24 future work recommendations. Our review highlights many promising data cleaning techniques that can be further extended. Conclusion: We believe that our review of the literature will help the community develop better approaches to clean data.
Abstract:Context: An increasing demand is observed in various domains to employ Machine Learning (ML) for solving complex problems. ML models are implemented as software components and deployed in Machine Learning Software Systems (MLSSs). Problem: There is a strong need for ensuring the serving quality of MLSSs. False or poor decisions of such systems can lead to malfunction of other systems, significant financial losses, or even threats to human life. The quality assurance of MLSSs is considered a challenging task and currently is a hot research topic. Objective: This paper aims to investigate the characteristics of real quality issues in MLSSs from the viewpoint of practitioners. This empirical study aims to identify a catalog of quality issues in MLSSs. Method: We conduct a set of interviews with practitioners/experts, to gather insights about their experience and practices when dealing with quality issues. We validate the identified quality issues via a survey with ML practitioners. Results: Based on the content of 37 interviews, we identified 18 recurring quality issues and 24 strategies to mitigate them. For each identified issue, we describe the causes and consequences according to the practitioners' experience. Conclusion: We believe the catalog of issues developed in this study will allow the community to develop efficient quality assurance tools for ML models and MLSSs. A replication package of our study is available on our public GitHub repository.
Abstract:As machine learning (ML) systems get adopted in more critical areas, it has become increasingly crucial to address the bias that could occur in these systems. Several fairness pre-processing algorithms are available to alleviate implicit biases during model training. These algorithms employ different concepts of fairness, often leading to conflicting strategies with consequential trade-offs between fairness and accuracy. In this work, we evaluate three popular fairness pre-processing algorithms and investigate the potential for combining all algorithms into a more robust pre-processing ensemble. We report on lessons learned that can help practitioners better select fairness algorithms for their models.
Abstract:Context: An increasing demand is observed in various domains to employ Machine Learning (ML) for solving complex problems. ML models are implemented as software components and deployed in Machine Learning Software Systems (MLSSs). Problem: There is a strong need for ensuring the serving quality of MLSSs. False or poor decisions of such systems can lead to malfunction of other systems, significant financial losses, or even threat to human life. The quality assurance of MLSSs is considered as a challenging task and currently is a hot research topic. Moreover, it is important to cover all various aspects of the quality in MLSSs. Objective: This paper aims to investigate the characteristics of real quality issues in MLSSs from the viewpoint of practitioners. This empirical study aims to identify a catalog of bad-practices related to poor quality in MLSSs. Method: We plan to conduct a set of interviews with practitioners/experts, believing that interviews are the best method to retrieve their experience and practices when dealing with quality issues. We expect that the catalog of issues developed at this step will also help us later to identify the severity, root causes, and possible remedy for quality issues of MLSSs, allowing us to develop efficient quality assurance tools for ML models and MLSSs.