Abstract:Emerging research in Pluralistic Artificial Intelligence (AI) alignment seeks to address how intelligent systems can be designed and deployed in accordance with diverse human needs and values. We contribute to this pursuit with a dynamic approach for aligning AI with diverse and shifting user preferences through Multi Objective Reinforcement Learning (MORL), via post-learning policy selection adjustment. In this paper, we introduce the proposed framework for this approach, outline its anticipated advantages and assumptions, and discuss technical details about the implementation. We also examine the broader implications of adopting a retroactive alignment approach through the sociotechnical systems perspective.
Abstract:Reinforcement learning (RL) is a valuable tool for the creation of AI systems. However it may be problematic to adequately align RL based on scalar rewards if there are multiple conflicting values or stakeholders to be considered. Over the last decade multi-objective reinforcement learning (MORL) using vector rewards has emerged as an alternative to standard, scalar RL. This paper provides an overview of the role which MORL can play in creating pluralistically-aligned AI.
Abstract:Multi-objective reinforcement learning (MORL) algorithms extend conventional reinforcement learning (RL) to the more general case of problems with multiple, conflicting objectives, represented by vector-valued rewards. Widely-used scalar RL methods such as Q-learning can be modified to handle multiple objectives by (1) learning vector-valued value functions, and (2) performing action selection using a scalarisation or ordering operator which reflects the user's utility with respect to the different objectives. However, as we demonstrate here, if the user's utility function maps widely varying vector-values to similar levels of utility, this can lead to interference in the value-function learned by the agent, leading to convergence to sub-optimal policies. This will be most prevalent in stochastic environments when optimising for the Expected Scalarised Return criterion, but we present a simple example showing that interference can also arise in deterministic environments. We demonstrate empirically that avoiding the use of random tie-breaking when identifying greedy actions can ameliorate, but not fully overcome, the problems caused by value function interference.
Abstract:Research in multi-objective reinforcement learning (MORL) has introduced the utility-based paradigm, which makes use of both environmental rewards and a function that defines the utility derived by the user from those rewards. In this paper we extend this paradigm to the context of single-objective reinforcement learning (RL), and outline multiple potential benefits including the ability to perform multi-policy learning across tasks relating to uncertain objectives, risk-aware RL, discounting, and safe RL. We also examine the algorithmic implications of adopting a utility-based approach.
Abstract:One common approach to solve multi-objective reinforcement learning (MORL) problems is to extend conventional Q-learning by using vector Q-values in combination with a utility function. However issues can arise with this approach in the context of stochastic environments, particularly when optimising for the Scalarised Expected Reward (SER) criterion. This paper extends prior research, providing a detailed examination of the factors influencing the frequency with which value-based MORL Q-learning algorithms learn the SER-optimal policy for an environment with stochastic state transitions. We empirically examine several variations of the core multi-objective Q-learning algorithm as well as reward engineering approaches, and demonstrate the limitations of these methods. In particular, we highlight the critical impact of the noisy Q-value estimates issue on the stability and convergence of these algorithms.
Abstract:The rapid advancement of artificial intelligence (AI) systems suggests that artificial general intelligence (AGI) systems may soon arrive. Many researchers are concerned that AIs and AGIs will harm humans via intentional misuse (AI-misuse) or through accidents (AI-accidents). In respect of AI-accidents, there is an increasing effort focused on developing algorithms and paradigms that ensure AI systems are aligned to what humans intend, e.g. AI systems that yield actions or recommendations that humans might judge as consistent with their intentions and goals. Here we argue that alignment to human intent is insufficient for safe AI systems and that preservation of long-term agency of humans may be a more robust standard, and one that needs to be separated explicitly and a priori during optimization. We argue that AI systems can reshape human intention and discuss the lack of biological and psychological mechanisms that protect humans from loss of agency. We provide the first formal definition of agency-preserving AI-human interactions which focuses on forward-looking agency evaluations and argue that AI systems - not humans - must be increasingly tasked with making these evaluations. We show how agency loss can occur in simple environments containing embedded agents that use temporal-difference learning to make action recommendations. Finally, we propose a new area of research called "agency foundations" and pose four initial topics designed to improve our understanding of agency in AI-human interactions: benevolent game theory, algorithmic foundations of human rights, mechanistic interpretability of agency representation in neural-networks and reinforcement learning from internal states.
Abstract:The use of interactive advice in reinforcement learning scenarios allows for speeding up the learning process for autonomous agents. Current interactive reinforcement learning research has been limited to real-time interactions that offer relevant user advice to the current state only. Moreover, the information provided by each interaction is not retained and instead discarded by the agent after a single use. In this paper, we present a method for retaining and reusing provided knowledge, allowing trainers to give general advice relevant to more than just the current state. Results obtained show that the use of broad-persistent advice substantially improves the performance of the agent while reducing the number of interactions required for the trainer.
Abstract:Deep Q-Networks algorithm (DQN) was the first reinforcement learning algorithm using deep neural network to successfully surpass human level performance in a number of Atari learning environments. However, divergent and unstable behaviour have been long standing issues in DQNs. The unstable behaviour is often characterised by overestimation in the $Q$-values, commonly referred to as the overestimation bias. To address the overestimation bias and the divergent behaviour, a number of heuristic extensions have been proposed. Notably, multi-step updates have been shown to drastically reduce unstable behaviour while improving agent's training performance. However, agents are often highly sensitive to the selection of the multi-step update horizon ($n$), and our empirical experiments show that a poorly chosen static value for $n$ can in many cases lead to worse performance than single-step DQN. Inspired by the success of $n$-step DQN and the effects that multi-step updates have on overestimation bias, this paper proposes a new algorithm that we call `Elastic Step DQN' (ES-DQN). It dynamically varies the step size horizon in multi-step updates based on the similarity of states visited. Our empirical evaluation shows that ES-DQN out-performs $n$-step with fixed $n$ updates, Double DQN and Average DQN in several OpenAI Gym environments while at the same time alleviating the overestimation bias.
Abstract:Explainable artificial intelligence is a research field that tries to provide more transparency for autonomous intelligent systems. Explainability has been used, particularly in reinforcement learning and robotic scenarios, to better understand the robot decision-making process. Previous work, however, has been widely focused on providing technical explanations that can be better understood by AI practitioners than non-expert end-users. In this work, we make use of human-like explanations built from the probability of success to complete the goal that an autonomous robot shows after performing an action. These explanations are intended to be understood by people who have no or very little experience with artificial intelligence methods. This paper presents a user trial to study whether these explanations that focus on the probability an action has of succeeding in its goal constitute a suitable explanation for non-expert end-users. The results obtained show that non-expert participants rate robot explanations that focus on the probability of success higher and with less variance than technical explanations generated from Q-values, and also favor counterfactual explanations over standalone explanations.
Abstract:Broad Explainable Artificial Intelligence moves away from interpreting individual decisions based on a single datum and aims to provide integrated explanations from multiple machine learning algorithms into a coherent explanation of an agent's behaviour that is aligned to the communication needs of the explainee. Reinforcement Learning (RL) methods, we propose, provide a potential backbone for the cognitive model required for the development of Broad-XAI. RL represents a suite of approaches that have had increasing success in solving a range of sequential decision-making problems. However, these algorithms all operate as black-box problem solvers, where they obfuscate their decision-making policy through a complex array of values and functions. EXplainable RL (XRL) is relatively recent field of research that aims to develop techniques to extract concepts from the agent's: perception of the environment; intrinsic/extrinsic motivations/beliefs; Q-values, goals and objectives. This paper aims to introduce a conceptual framework, called the Causal XRL Framework (CXF), that unifies the current XRL research and uses RL as a backbone to the development of Broad-XAI. Additionally, we recognise that RL methods have the ability to incorporate a range of technologies to allow agents to adapt to their environment. CXF is designed for the incorporation of many standard RL extensions and integrated with external ontologies and communication facilities so that the agent can answer questions that explain outcomes and justify its decisions.