Abstract:Electricity Consumption Profiles (ECPs) are crucial for operating and planning power distribution systems, especially with the increasing numbers of various low-carbon technologies such as solar panels and electric vehicles. Traditional ECP modeling methods typically assume the availability of sufficient ECP data. However, in practice, the accessibility of ECP data is limited due to privacy issues or the absence of metering devices. Few-shot learning (FSL) has emerged as a promising solution for ECP modeling in data-scarce scenarios. Nevertheless, standard FSL methods, such as those used for images, are unsuitable for ECP modeling because (1) these methods usually assume several source domains with sufficient data and several target domains. However, in the context of ECP modeling, there may be thousands of source domains with a moderate amount of data and thousands of target domains. (2) Standard FSL methods usually involve cumbersome knowledge transfer mechanisms, such as pre-training and fine-tuning, whereas ECP modeling requires more lightweight methods. (3) Deep learning models often lack explainability, hindering their application in industry. This paper proposes a novel FSL method that exploits Transformers and Gaussian Mixture Models (GMMs) for ECP modeling to address the above-described issues. Results show that our method can accurately restore the complex ECP distribution with a minimal amount of ECP data (e.g., only 1.6\% of the complete domain dataset) while it outperforms state-of-the-art time series modeling methods, maintaining the advantages of being both lightweight and interpretable. The project is open-sourced at https://github.com/xiaweijie1996/TransformerEM-GMM.git.
Abstract:Deep Reinforcement Learning (DRL) presents a promising avenue for optimizing Energy Storage Systems (ESSs) dispatch in distribution networks. This paper introduces RL-ADN, an innovative open-source library specifically designed for solving the optimal ESSs dispatch in active distribution networks. RL-ADN offers unparalleled flexibility in modeling distribution networks, and ESSs, accommodating a wide range of research goals. A standout feature of RL-ADN is its data augmentation module, based on Gaussian Mixture Model and Copula (GMC) functions, which elevates the performance ceiling of DRL agents. Additionally, RL-ADN incorporates the Laurent power flow solver, significantly reducing the computational burden of power flow calculations during training without sacrificing accuracy. The effectiveness of RL-ADN is demonstrated using in different sizes of distribution networks, showing marked performance improvements in the adaptability of DRL algorithms for ESS dispatch tasks. This enhancement is particularly beneficial from the increased diversity of training scenarios. Furthermore, RL-ADN achieves a tenfold increase in computational efficiency during training, making it highly suitable for large-scale network applications. The library sets a new benchmark in DRL-based ESSs dispatch in distribution networks and it is poised to advance DRL applications in distribution network operations significantly. RL-ADN is available at: https://github.com/ShengrenHou/RL-ADN.
Abstract:High-resolution time series data are crucial for operation and planning in energy systems such as electrical power systems and heating systems. However, due to data collection costs and privacy concerns, such data is often unavailable or insufficient for downstream tasks. Data synthesis is a potential solution for this data scarcity. With the recent development of generative AI, we propose EnergyDiff, a universal data generation framework for energy time series data. EnergyDiff builds on state-of-the-art denoising diffusion probabilistic models, utilizing a proposed denoising network dedicated to high-resolution time series data and introducing a novel Marginal Calibration technique. Our extensive experimental results demonstrate that EnergyDiff achieves significant improvement in capturing temporal dependencies and marginal distributions compared to baselines, particularly at the 1-minute resolution. Additionally, EnergyDiff consistently generates high-quality time series data across diverse energy domains, time resolutions, and at both customer and transformer levels with reduced computational need.
Abstract:Residential Load Profile (RLP) generation and prediction are critical for the operation and planning of distribution networks, particularly as diverse low-carbon technologies are increasingly integrated. This paper introduces a novel flow-based generative model, termed Full Convolutional Profile Flow (FCPFlow), which is uniquely designed for both conditional and unconditional RLP generation, and for probabilistic load forecasting. By introducing two new layers--the invertible linear layer and the invertible normalization layer--the proposed FCPFlow architecture shows three main advantages compared to traditional statistical and contemporary deep generative models: 1) it is well-suited for RLP generation under continuous conditions, such as varying weather and annual electricity consumption, 2) it shows superior scalability in different datasets compared to traditional statistical models, and 3) it also demonstrates better modeling capabilities in capturing the complex correlation of RLPs compared with deep generative models.
Abstract:As electric vehicle (EV) numbers rise, concerns about the capacity of current charging and power grid infrastructure grow, necessitating the development of smart charging solutions. While many smart charging simulators have been developed in recent years, only a few support the development of Reinforcement Learning (RL) algorithms in the form of a Gym environment, and those that do usually lack depth in modeling Vehicle-to-Grid (V2G) scenarios. To address the aforementioned issues, this paper introduces the EV2Gym, a realistic simulator platform for the development and assessment of small and large-scale smart charging algorithms within a standardized platform. The proposed simulator is populated with comprehensive EV, charging station, power transformer, and EV behavior models validated using real data. EV2Gym has a highly customizable interface empowering users to choose from pre-designed case studies or craft their own customized scenarios to suit their specific requirements. Moreover, it incorporates a diverse array of RL, mathematical programming, and heuristic algorithms to speed up the development and benchmarking of new solutions. By offering a unified and standardized platform, EV2Gym aims to provide researchers and practitioners with a robust environment for advancing and assessing smart charging algorithms.
Abstract:This paper explores the potential application of quantum and hybrid quantum-classical neural networks in power flow analysis. Experiments are conducted using two small-size datasets based on the IEEE 4-bus and 33-bus test systems. A systematic performance comparison is also conducted among quantum, hybrid quantum-classical, and classical neural networks. The comparison is based on (i) generalization ability, (ii) robustness, (iii) training dataset size needed, (iv) training error. (v) training computational time, and (vi) training process stability. The results show that the developed quantum-classical neural network outperforms both quantum and classical neural networks, and hence can improve deep learning-based power flow analysis in the noisy-intermediate-scale quantum (NISQ) era.
Abstract:Probabilistic modelling of power systems operation and planning processes depends on data-driven methods, which require sufficiently large datasets. When historical data lacks this, it is desired to model the underlying data generation mechanism as a probability distribution to assess the data quality and generate more data, if needed. Kernel density estimation (KDE) based models are popular choices for this task, but they fail to adapt to data regions with varying densities. In this paper, an adaptive KDE model is employed to circumvent this, where each kernel in the model has an individual bandwidth. The leave-one-out maximum log-likelihood (LOO-MLL) criterion is proposed to prevent the singular solutions that the regular MLL criterion gives rise to, and it is proven that LOO-MLL prevents these. Relying on this guaranteed robustness, the model is extended by assigning learnable weights to the kernels. In addition, a modified expectation-maximization algorithm is employed to accelerate the optimization speed reliably. The performance of the proposed method and models are exhibited on two power systems datasets using different statistical tests and by comparison with Gaussian mixture models. Results show that the proposed models have promising performance, in addition to their singularity prevention guarantees.
Abstract:The optimal dispatch of energy storage systems (ESSs) presents formidable challenges due to the uncertainty introduced by fluctuations in dynamic prices, demand consumption, and renewable-based energy generation. By exploiting the generalization capabilities of deep neural networks (DNNs), deep reinforcement learning (DRL) algorithms can learn good-quality control models that adaptively respond to distribution networks' stochastic nature. However, current DRL algorithms lack the capabilities to enforce operational constraints strictly, often even providing unfeasible control actions. To address this issue, we propose a DRL framework that effectively handles continuous action spaces while strictly enforcing the environments and action space operational constraints during online operation. Firstly, the proposed framework trains an action-value function modeled using DNNs. Subsequently, this action-value function is formulated as a mixed-integer programming (MIP) formulation enabling the consideration of the environment's operational constraints. Comprehensive numerical simulations show the superior performance of the proposed MIP-DRL framework, effectively enforcing all constraints while delivering high-quality dispatch decisions when compared with state-of-the-art DRL algorithms and the optimal solution obtained with a perfect forecast of the stochastic variables.
Abstract:Variational autoencoder (VAE) neural networks can be trained to generate power system states that capture both marginal distribution and multivariate dependencies of historical data. The coordinates of the latent space codes of VAEs have been shown to correlate with conceptual features of the data, which can be leveraged to synthesize targeted data with desired features. However, the locations of the VAEs' latent space codes that correspond to specific properties are not constrained. Additionally, the generation of data with specific characteristics may require data with corresponding hard-to-get labels fed into the generative model for training. In this paper, to make data generation more controllable and efficient, an oriented variation autoencoder (OVAE) is proposed to constrain the link between latent space code and generated data in the form of a Spearman correlation, which provides increased control over the data synthesis process. On this basis, an importance sampling process is used to sample data in the latent space. Two cases are considered for testing the performance of the OVAE model: the data set is fully labeled with approximate information and the data set is incompletely labeled but with more accurate information. The experimental results show that, in both cases, the OVAE model correlates latent space codes with the generated data, and the efficiency of generating targeted samples is significantly improved.
Abstract:Generating power system states that have similar distribution and dependency to the historical ones is essential for the tasks of system planning and security assessment, especially when the historical data is insufficient. In this paper, we described a generative model for load profiles of industrial and commercial customers, based on the conditional variational autoencoder (CVAE) neural network architecture, which is challenging due to the highly variable nature of such profiles. Generated contextual load profiles were conditioned on the month of the year and typical power exchange with the grid. Moreover, the quality of generations was both visually and statistically evaluated. The experimental results demonstrate our proposed CVAE model can capture temporal features of historical load profiles and generate `realistic' data with satisfying univariate distributions and multivariate dependencies.