Abstract:This study introduces PINN4PF, an end-to-end deep learning architecture for power flow (PF) analysis that effectively captures the nonlinear dynamics of large-scale modern power systems. The proposed neural network (NN) architecture consists of two important advancements in the training pipeline: (A) a double-head feed-forward NN that aligns with PF analysis, including an activation function that adjusts to active and reactive power consumption patterns, and (B) a physics-based loss function that partially incorporates power system topology information. The effectiveness of the proposed architecture is illustrated through 4-bus, 15-bus, 290-bus, and 2224-bus test systems and is evaluated against two baselines: a linear regression model (LR) and a black-box NN (MLP). The comparison is based on (i) generalization ability, (ii) robustness, (iii) impact of training dataset size on generalization ability, (iv) accuracy in approximating derived PF quantities (specifically line current, line active power, and line reactive power), and (v) scalability. Results demonstrate that PINN4PF outperforms both baselines across all test systems by up to two orders of magnitude not only in terms of direct criteria, e.g., generalization ability but also in terms of approximating derived physical quantities.
Abstract:As electric vehicle (EV) numbers rise, concerns about the capacity of current charging and power grid infrastructure grow, necessitating the development of smart charging solutions. While many smart charging simulators have been developed in recent years, only a few support the development of Reinforcement Learning (RL) algorithms in the form of a Gym environment, and those that do usually lack depth in modeling Vehicle-to-Grid (V2G) scenarios. To address the aforementioned issues, this paper introduces the EV2Gym, a realistic simulator platform for the development and assessment of small and large-scale smart charging algorithms within a standardized platform. The proposed simulator is populated with comprehensive EV, charging station, power transformer, and EV behavior models validated using real data. EV2Gym has a highly customizable interface empowering users to choose from pre-designed case studies or craft their own customized scenarios to suit their specific requirements. Moreover, it incorporates a diverse array of RL, mathematical programming, and heuristic algorithms to speed up the development and benchmarking of new solutions. By offering a unified and standardized platform, EV2Gym aims to provide researchers and practitioners with a robust environment for advancing and assessing smart charging algorithms.
Abstract:Accurate and efficient power flow (PF) analysis is crucial in modern electrical networks' efficient operation and planning. Therefore, there is a need for scalable algorithms capable of handling large-scale power networks that can provide accurate and fast solutions. Graph Neural Networks (GNNs) have emerged as a promising approach for enhancing the speed of PF approximations by leveraging their ability to capture distinctive features from the underlying power network graph. In this study, we introduce PowerFlowNet, a novel GNN architecture for PF approximation that showcases similar performance with the traditional Newton-Raphson method but achieves it 4 times faster in the simple IEEE 14-bus system and 145 times faster in the realistic case of the French high voltage network (6470rte). Meanwhile, it significantly outperforms other traditional approximation methods, such as the DC relaxation method, in terms of performance and execution time; therefore, making PowerFlowNet a highly promising solution for real-world PF analysis. Furthermore, we verify the efficacy of our approach by conducting an in-depth experimental evaluation, thoroughly examining the performance, scalability, interpretability, and architectural dependability of PowerFlowNet. The evaluation provides insights into the behavior and potential applications of GNNs in power system analysis.
Abstract:The increasing number of Distributed Energy Resources (DERs) in the emerging Smart Grid, has created an imminent need for intelligent multiagent frameworks able to utilize these assets efficiently. In this paper, we propose a novel DER aggregation framework, encompassing a multiagent architecture and various types of mechanisms for the effective management and efficient integration of DERs in the Grid. One critical component of our architecture is the Local Flexibility Estimators (LFEs) agents, which are key for offloading the Aggregator from serious or resource-intensive responsibilities -- such as addressing privacy concerns and predicting the accuracy of DER statements regarding their offered demand response services. The proposed framework allows the formation of efficient LFE cooperatives. To this end, we developed and deployed a variety of cooperative member selection mechanisms, including (a) scoring rules, and (b) (deep) reinforcement learning. We use data from the well-known PowerTAC simulator to systematically evaluate our framework. Our experiments verify its effectiveness for incorporating heterogeneous DERs into the Grid in an efficient manner. In particular, when using the well-known probabilistic prediction accuracy-incentivizing CRPS scoring rule as a selection mechanism, our framework results in increased average payments for participants, when compared with traditional commercial aggregators.