This paper explores the potential application of quantum and hybrid quantum-classical neural networks in power flow analysis. Experiments are conducted using two small-size datasets based on the IEEE 4-bus and 33-bus test systems. A systematic performance comparison is also conducted among quantum, hybrid quantum-classical, and classical neural networks. The comparison is based on (i) generalization ability, (ii) robustness, (iii) training dataset size needed, (iv) training error. (v) training computational time, and (vi) training process stability. The results show that the developed quantum-classical neural network outperforms both quantum and classical neural networks, and hence can improve deep learning-based power flow analysis in the noisy-intermediate-scale quantum (NISQ) era.