Abstract:Probabilistic forecasting in power systems often involves multi-entity datasets like households, feeders, and wind turbines, where generating reliable entity-specific forecasts presents significant challenges. Traditional approaches require training individual models for each entity, making them inefficient and hard to scale. This study addresses this problem using GUIDE-VAE, a conditional variational autoencoder that allows entity-specific probabilistic forecasting using a single model. GUIDE-VAE provides flexible outputs, ranging from interpretable point estimates to full probability distributions, thanks to its advanced covariance composition structure. These distributions capture uncertainty and temporal dependencies, offering richer insights than traditional methods. To evaluate our GUIDE-VAE-based forecaster, we use household electricity consumption data as a case study due to its multi-entity and highly stochastic nature. Experimental results demonstrate that GUIDE-VAE outperforms conventional quantile regression techniques across key metrics while ensuring scalability and versatility. These features make GUIDE-VAE a powerful and generalizable tool for probabilistic forecasting tasks, with potential applications beyond household electricity consumption.
Abstract:Generative modelling of multi-user datasets has become prominent in science and engineering. Generating a data point for a given user requires employing user information, and conventional generative models, including variational autoencoders (VAEs), often ignore that. This paper introduces GUIDE-VAE, a novel conditional generative model that leverages user embeddings to generate user-guided data. By allowing the model to benefit from shared patterns across users, GUIDE-VAE enhances performance in multi-user settings, even under significant data imbalance. In addition to integrating user information, GUIDE-VAE incorporates a pattern dictionary-based covariance composition (PDCC) to improve the realism of generated samples by capturing complex feature dependencies. While user embeddings drive performance gains, PDCC addresses common issues such as noise and over-smoothing typically seen in VAEs. The proposed GUIDE-VAE was evaluated on a multi-user smart meter dataset characterized by substantial data imbalance across users. Quantitative results show that GUIDE-VAE performs effectively in both synthetic data generation and missing record imputation tasks, while qualitative evaluations reveal that GUIDE-VAE produces more plausible and less noisy data. These results establish GUIDE-VAE as a promising tool for controlled, realistic data generation in multi-user datasets, with potential applications across various domains requiring user-informed modelling.
Abstract:System operators are faced with increasingly volatile operating conditions. In order to manage system reliability in a cost-effective manner, control room operators are turning to computerised decision support tools based on AI and machine learning. Specifically, Reinforcement Learning (RL) is a promising technique to train agents that suggest grid control actions to operators. In this paper, a simple baseline approach is presented using RL to represent an artificial control room operator that can operate a IEEE 14-bus test case for a duration of 1 week. This agent takes topological switching actions to control power flows on the grid, and is trained on only a single well-chosen scenario. The behaviour of this agent is tested on different time-series of generation and demand, demonstrating its ability to operate the grid successfully in 965 out of 1000 scenarios. The type and variability of topologies suggested by the agent are analysed across the test scenarios, demonstrating efficient and diverse agent behaviour.