Abstract:Reinforcement Learning (RL) has shown its remarkable and generalizable capability in legged locomotion through sim-to-real transfer. However, while adaptive methods like domain randomization are expected to make policy more robust to diverse environments, such comprehensiveness potentially detracts from the policy's performance in any specific environment according to the No Free Lunch theorem, leading to a suboptimal solution once deployed in the real world. To address this issue, we propose a lifelong policy adaptation framework named LoopSR, which utilizes a transformer-based encoder to project real-world trajectories into a latent space, and accordingly reconstruct the real-world environments back in simulation for further improvement. Autoencoder architecture and contrastive learning methods are adopted to better extract the characteristics of real-world dynamics. The simulation parameters for continual training are derived by combining predicted parameters from the decoder with retrieved parameters from the simulation trajectory dataset. By leveraging the continual training, LoopSR achieves superior data efficiency compared with strong baselines, with only a limited amount of data to yield eminent performance in both sim-to-sim and sim-to-real experiments.
Abstract:This paper presents a novel evaluation approach to text-based speaker diarization (SD), tackling the limitations of traditional metrics that do not account for any contextual information in text. Two new metrics are proposed, Text-based Diarization Error Rate and Diarization F1, which perform utterance- and word-level evaluations by aligning tokens in reference and hypothesis transcripts. Our metrics encompass more types of errors compared to existing ones, allowing us to make a more comprehensive analysis in SD. To align tokens, a multiple sequence alignment algorithm is introduced that supports multiple sequences in the reference while handling high-dimensional alignment to the hypothesis using dynamic programming. Our work is packaged into two tools, align4d providing an API for our alignment algorithm and TranscribeView for visualizing and evaluating SD errors, which can greatly aid in the creation of high-quality data, fostering the advancement of dialogue systems.