Abstract:Legal facts refer to the facts that can be proven by acknowledged evidence in a trial. They form the basis for the determination of court judgments. This paper introduces a novel NLP task: legal fact prediction, which aims to predict the legal fact based on a list of evidence. The predicted facts can instruct the parties and their lawyers involved in a trial to strengthen their submissions and optimize their strategies during the trial. Moreover, since real legal facts are difficult to obtain before the final judgment, the predicted facts also serve as an important basis for legal judgment prediction. We construct a benchmark dataset consisting of evidence lists and ground-truth legal facts for real civil loan cases, LFPLoan. Our experiments on this dataset show that this task is non-trivial and requires further considerable research efforts.
Abstract:Recently, deep learning-based methods have reached an excellent performance on License Plate (LP) detection and recognition tasks. However, it is still challenging to build a robust model for Chinese LPs since there are not enough large and representative datasets. In this work, we propose a new dataset named Chinese Road Plate Dataset (CRPD) that contains multi-objective Chinese LP images as a supplement to the existing public benchmarks. The images are mainly captured with electronic monitoring systems with detailed annotations. To our knowledge, CRPD is the largest public multi-objective Chinese LP dataset with annotations of vertices. With CRPD, a unified detection and recognition network with high efficiency is presented as the baseline. The network is end-to-end trainable with totally real-time inference efficiency (30 fps with 640p). The experiments on several public benchmarks demonstrate that our method has reached competitive performance. The code and dataset will be publicly available at https://github.com/yxgong0/CRPD.