Abstract:Large language models (LLMs) represent prompt-conditioned beliefs (posteriors over answers and claims), but we lack a mechanistic account of how these beliefs are encoded in representation space, how they update with new evidence, and how interventions reshape them. We study a controlled setting in which Llama-3.2 generates samples from a normal distribution by implicitly inferring its parameters (mean and standard deviation) given only samples from the distribution in context. We find representations of curved "belief manifolds" for these parameters form with sufficient in-context learning and study how the model adapts when the distribution suddenly changes. While standard linear steering often pushes the model off-manifold and induces coupled, out-of-distribution shifts, geometry and field-aware steering better preserves the intended belief family. Our work demonstrates an example of linear field probing (LFP) as a simple approach to tile the data manifold and make interventions that respect the underlying geometry. We conclude that rich structure emerges naturally in LLMs and that purely linear concept representations are often an inadequate abstraction.
Abstract:Can we localize the weights and mechanisms used by a language model to memorize and recite entire paragraphs of its training data? In this paper, we show that while memorization is spread across multiple layers and model components, gradients of memorized paragraphs have a distinguishable spatial pattern, being larger in lower model layers than gradients of non-memorized examples. Moreover, the memorized examples can be unlearned by fine-tuning only the high-gradient weights. We localize a low-layer attention head that appears to be especially involved in paragraph memorization. This head is predominantly focusing its attention on distinctive, rare tokens that are least frequent in a corpus-level unigram distribution. Next, we study how localized memorization is across the tokens in the prefix by perturbing tokens and measuring the caused change in the decoding. A few distinctive tokens early in a prefix can often corrupt the entire continuation. Overall, memorized continuations are not only harder to unlearn, but also to corrupt than non-memorized ones.