Abstract:Chain-of-Thought (CoT) prompting has boosted the multi-step reasoning capabilities of Large Language Models (LLMs) by generating a series of rationales before the final answer. We analyze the reasoning paths generated by CoT and find two issues in multi-step reasoning: (i) Generating rationales irrelevant to the question, (ii) Unable to compose subquestions or queries for generating/retrieving all the relevant information. To address them, we propose a graph-guided CoT prompting method, which guides the LLMs to reach the correct answer with graph representation/verification steps. Specifically, we first leverage LLMs to construct a "question/rationale graph" by using knowledge extraction prompting given the initial question and the rationales generated in the previous steps. Then, the graph verification step diagnoses the current rationale triplet by comparing it with the existing question/rationale graph to filter out irrelevant rationales and generate follow-up questions to obtain relevant information. Additionally, we generate CoT paths that exclude the extracted graph information to represent the context information missed from the graph extraction. Our graph-guided reasoning method shows superior performance compared to previous CoT prompting and the variants on multi-hop question answering benchmark datasets.
Abstract:Personalization, the ability to tailor a system to individual users, is an essential factor in user experience with natural language processing (NLP) systems. With the emergence of Large Language Models (LLMs), a key question is how to leverage these models to better personalize user experiences. To personalize a language model's output, a straightforward approach is to incorporate past user data into the language model prompt, but this approach can result in lengthy inputs exceeding limitations on input length and incurring latency and cost issues. Existing approaches tackle such challenges by selectively extracting relevant user data (i.e. selective retrieval) to construct a prompt for downstream tasks. However, retrieval-based methods are limited by potential information loss, lack of more profound user understanding, and cold-start challenges. To overcome these limitations, we propose a novel summary-augmented approach by extending retrieval-augmented personalization with task-aware user summaries generated by LLMs. The summaries can be generated and stored offline, enabling real-world systems with runtime constraints like voice assistants to leverage the power of LLMs. Experiments show our method with 75% less of retrieved user data is on-par or outperforms retrieval augmentation on most tasks in the LaMP personalization benchmark. We demonstrate that offline summarization via LLMs and runtime retrieval enables better performance for personalization on a range of tasks under practical constraints.
Abstract:Open domain conversational agents can answer a broad range of targeted queries. However, the sequential nature of interaction with these systems makes knowledge exploration a lengthy task which burdens the user with asking a chain of well phrased questions. In this paper, we present a retrieval based system and associated dataset for predicting the next questions that the user might have. Such a system can proactively assist users in knowledge exploration leading to a more engaging dialog. The retrieval system is trained on a dataset which contains ~14K multi-turn information-seeking conversations with a valid follow-up question and a set of invalid candidates. The invalid candidates are generated to simulate various syntactic and semantic confounders such as paraphrases, partial entity match, irrelevant entity, and ASR errors. We use confounder specific techniques to simulate these negative examples on the OR-QuAC dataset and develop a dataset called the Follow-up Query Bank (FQ-Bank). Then, we train ranking models on FQ-Bank and present results comparing supervised and unsupervised approaches. The results suggest that we can retrieve the valid follow-ups by ranking them in higher positions compared to confounders, but further knowledge grounding can improve ranking performance.