Charles
Abstract:Several challenges make it difficult for sparse neural networks to compete with dense models. First, setting a large fraction of weights to zero impairs forward and gradient signal propagation. Second, sparse studies often need to test multiple sparsity levels, while also introducing new hyperparameters (HPs), leading to prohibitive tuning costs. Indeed, the standard practice is to re-use the learning HPs originally crafted for dense models. Unfortunately, we show sparse and dense networks do not share the same optimal HPs. Without stable dynamics and effective training recipes, it is costly to test sparsity at scale, which is key to surpassing dense networks and making the business case for sparsity acceleration in hardware. A holistic approach is needed to tackle these challenges and we propose S$\mu$Par as one such approach. S$\mu$Par ensures activations, gradients, and weight updates all scale independently of sparsity level. Further, by reparameterizing the HPs, S$\mu$Par enables the same HP values to be optimal as we vary both sparsity level and model width. HPs can be tuned on small dense networks and transferred to large sparse models, greatly reducing tuning costs. On large-scale language modeling, S$\mu$Par training improves loss by up to 8.2% over the common approach of using the dense model standard parameterization.
Abstract:Linear position interpolation helps pre-trained models using rotary position embeddings (RoPE) to extrapolate to longer sequence lengths. We propose using linear position interpolation to extend the extrapolation range of models using Attention with Linear Biases (ALiBi). We find position interpolation significantly improves extrapolation capability on upstream language modelling and downstream summarization and retrieval tasks.
Abstract:We introduce the Bittensor Language Model, called "BTLM-3B-8K", a new state-of-the-art 3 billion parameter open-source language model. BTLM-3B-8K was trained on 627B tokens from the SlimPajama dataset with a mixture of 2,048 and 8,192 context lengths. BTLM-3B-8K outperforms all existing 3B parameter models by 2-5.5% across downstream tasks. BTLM-3B-8K is even competitive with some 7B parameter models. Additionally, BTLM-3B-8K provides excellent long context performance, outperforming MPT-7B-8K and XGen-7B-8K on tasks up to 8,192 context length. We trained the model on a cleaned and deduplicated SlimPajama dataset; aggressively tuned the \textmu P hyperparameters and schedule; used ALiBi position embeddings; and adopted the SwiGLU nonlinearity. On Hugging Face, the most popular models have 7B parameters, indicating that users prefer the quality-size ratio of 7B models. Compacting the 7B parameter model to one with 3B parameters, with little performance impact, is an important milestone. BTLM-3B-8K needs only 3GB of memory with 4-bit precision and takes 2.5x less inference compute than 7B models, helping to open up access to a powerful language model on mobile and edge devices. BTLM-3B-8K is available under an Apache 2.0 license on Hugging Face: https://huggingface.co/cerebras/btlm-3b-8k-base.
Abstract:We study recent research advances that improve large language models through efficient pre-training and scaling, and open datasets and tools. We combine these advances to introduce Cerebras-GPT, a family of open compute-optimal language models scaled from 111M to 13B parameters. We train Cerebras-GPT models on the Eleuther Pile dataset following DeepMind Chinchilla scaling rules for efficient pre-training (highest accuracy for a given compute budget). We characterize the predictable power-law scaling and compare Cerebras-GPT with other publicly-available models to show all Cerebras-GPT models have state-of-the-art training efficiency on both pre-training and downstream objectives. We describe our learnings including how Maximal Update Parameterization ($\mu$P) can further improve large model scaling, improving accuracy and hyperparameter predictability at scale. We release our pre-trained models and code, making this paper the first open and reproducible work comparing compute-optimal model scaling to models trained on fixed dataset sizes. Cerebras-GPT models are available on HuggingFace: https://huggingface.co/cerebras.