Abstract:Language model alignment has become an important component of AI safety, allowing safe interactions between humans and language models, by enhancing desired behaviors and inhibiting undesired ones. It is often done by tuning the model or inserting preset aligning prompts. Recently, representation engineering, a method which alters the model's behavior via changing its representations post-training, was shown to be effective in aligning LLMs (Zou et al., 2023a). Representation engineering yields gains in alignment oriented tasks such as resistance to adversarial attacks and reduction of social biases, but was also shown to cause a decrease in the ability of the model to perform basic tasks. In this paper we study the tradeoff between the increase in alignment and decrease in helpfulness of the model. We propose a theoretical framework which provides bounds for these two quantities, and demonstrate their relevance empirically. Interestingly, we find that while the helpfulness generally decreases, it does so quadratically with the norm of the representation engineering vector, while the alignment increases linearly with it, indicating a regime in which it is efficient to use representation engineering. We validate our findings empirically, and chart the boundaries to the usefulness of representation engineering for alignment.
Abstract:Connectionist Temporal Classification (CTC) is a widely used criterion for training supervised sequence-to-sequence (seq2seq) models. It enables learning the relations between input and output sequences, termed alignments, by marginalizing over perfect alignments (that yield the ground truth), at the expense of imperfect alignments. This binary differentiation of perfect and imperfect alignments falls short of capturing other essential alignment properties that hold significance in other real-world applications. Here we propose $\textit{Align With Purpose}$, a $\textbf{general Plug-and-Play framework}$ for enhancing a desired property in models trained with the CTC criterion. We do that by complementing the CTC with an additional loss term that prioritizes alignments according to a desired property. Our method does not require any intervention in the CTC loss function, enables easy optimization of a variety of properties, and allows differentiation between both perfect and imperfect alignments. We apply our framework in the domain of Automatic Speech Recognition (ASR) and show its generality in terms of property selection, architectural choice, and scale of training dataset (up to 280,000 hours). To demonstrate the effectiveness of our framework, we apply it to two unrelated properties: emission time and word error rate (WER). For the former, we report an improvement of up to 570ms in latency optimization with a minor reduction in WER, and for the latter, we report a relative improvement of 4.5% WER over the baseline models. To the best of our knowledge, these applications have never been demonstrated to work on a scale of data as large as ours. Notably, our method can be implemented using only a few lines of code, and can be extended to other alignment-free loss functions and to domains other than ASR.
Abstract:An important aspect in developing language models that interact with humans is aligning their behavior to be useful and unharmful for their human users. This is usually achieved by tuning the model in a way that enhances desired behaviors and inhibits undesired ones, a process referred to as alignment. In this paper, we propose a theoretical approach called Behavior Expectation Bounds (BEB) which allows us to formally investigate several inherent characteristics and limitations of alignment in large language models. Importantly, we prove that for any behavior that has a finite probability of being exhibited by the model, there exist prompts that can trigger the model into outputting this behavior, with probability that increases with the length of the prompt. This implies that any alignment process that attenuates undesired behavior but does not remove it altogether, is not safe against adversarial prompting attacks. Furthermore, our framework hints at the mechanism by which leading alignment approaches such as reinforcement learning from human feedback increase the LLM's proneness to being prompted into the undesired behaviors. Moreover, we include the notion of personas in our BEB framework, and find that behaviors which are generally very unlikely to be exhibited by the model can be brought to the front by prompting the model to behave as specific persona. This theoretical result is being experimentally demonstrated in large scale by the so called contemporary "chatGPT jailbreaks", where adversarial users trick the LLM into breaking its alignment guardrails by triggering it into acting as a malicious persona. Our results expose fundamental limitations in alignment of LLMs and bring to the forefront the need to devise reliable mechanisms for ensuring AI safety.
Abstract:In-context learning is a surprising and important phenomenon that emerged when modern language models were scaled to billions of learned parameters. Without modifying a large language model's weights, it can be tuned to perform various downstream natural language tasks simply by including concatenated training examples of these tasks in its input. Though disruptive for many practical applications of large language models, this emergent learning paradigm is not well understood from a theoretical perspective. In this paper, we propose a first-of-its-kind PAC based framework for in-context learnability, and use it to provide the first finite sample complexity results for the in-context learning setup. Our framework includes an initial pretraining phase, which fits a function to the pretraining distribution, and then a second in-context learning phase, which keeps this function constant and concatenates training examples of the downstream task in its input. We use our framework in order to prove that, under mild assumptions, when the pretraining distribution is a mixture of latent tasks (a model often considered for natural language pretraining), these tasks can be efficiently learned via in-context learning, even though the model's weights are unchanged and the input significantly diverges from the pretraining distribution. Our theoretical analysis reveals that in this setting, in-context learning is more about identifying the task than about learning it, a result which is in line with a series of recent empirical findings. We hope that the in-context learnability framework presented in this paper will facilitate future progress towards a deeper understanding of this important new learning paradigm.
Abstract:The field of Natural Language Processing (NLP) has experienced a dramatic leap in capabilities with the recent introduction of huge Language Models (LMs). Despite this success, natural language problems that involve several compounded steps are still practically unlearnable, even by the largest LMs. This complies with experimental failures for end-to-end learning of composite problems that were demonstrated in a variety of domains. A known mitigation is to introduce intermediate supervision for solving sub-tasks of the compounded problem. Recently, several works have demonstrated high gains by taking a straightforward approach for incorporating intermediate supervision in compounded natural language problems: the sequence-to-sequence LM is fed with an augmented input, in which the decomposed tasks' labels are simply concatenated to the original input. In this paper, we prove a positive learning result that motivates these recent efforts. We show that when concatenating intermediate supervision to the input and training a sequence-to-sequence model on this modified input, an unlearnable composite problem becomes learnable. We prove this for the notoriously unlearnable composite task of bit-subset parity, with the intermediate supervision being parity results of increasingly large bit-subsets. Beyond motivating contemporary empirical efforts for incorporating intermediate supervision in sequence-to-sequence language models, our positive theoretical result is the first of its kind in the landscape of results on the benefits of intermediate supervision: Until now, all theoretical results on the subject are negative, i.e., show cases where learning is impossible without intermediate supervision, while our result is positive, showing a case where learning is facilitated in the presence of intermediate supervision.
Abstract:Pretraining Neural Language Models (NLMs) over a large corpus involves chunking the text into training examples, which are contiguous text segments of sizes processable by the neural architecture. We highlight a bias introduced by this common practice: we prove that the pretrained NLM can model much stronger dependencies between text segments that appeared in the same training example, than it can between text segments that appeared in different training examples. This intuitive result has a twofold role. First, it formalizes the motivation behind a broad line of recent successful NLM training heuristics, proposed for the pretraining and fine-tuning stages, which do not necessarily appear related at first glance. Second, our result clearly indicates further improvements to be made in NLM pretraining for the benefit of Natural Language Understanding tasks. As an example, we propose "kNN-Pretraining": we show that including semantically related non-neighboring sentences in the same pretraining example yields improved sentence representations and open domain question answering abilities. This theoretically motivated degree of freedom for "pretraining example design" indicates new training schemes for self-improving representations.
Abstract:After their successful debut in natural language processing, Transformer architectures are now becoming the de-facto standard in many domains. An obstacle for their deployment over new modalities is the architectural configuration: the optimal depth-to-width ratio has been shown to dramatically vary across data types (e.g., $10$x larger over images than over language). We theoretically predict the existence of an embedding rank bottleneck that limits the contribution of self-attention width to the Transformer expressivity. We thus directly tie the input vocabulary size and rank to the optimal depth-to-width ratio, since a small vocabulary size or rank dictates an added advantage of depth over width. We empirically demonstrate the existence of this bottleneck and its implications on the depth-to-width interplay of Transformer architectures, linking the architecture variability across domains to the often glossed-over usage of different vocabulary sizes or embedding ranks in different domains. As an additional benefit, our rank bottlenecking framework allows us to identify size redundancies of $25\%-50\%$ in leading NLP models such as ALBERT and T5.
Abstract:Self-attention architectures, which are rapidly pushing the frontier in natural language processing, demonstrate a surprising depth-inefficient behavior: Empirical signals indicate that increasing the internal representation (network width) is just as useful as increasing the number of self-attention layers (network depth). In this paper, we theoretically study the interplay between depth and width in self-attention, and shed light on the root of the above phenomenon. We invalidate the seemingly plausible hypothesis by which widening is as effective as deepening for self-attention, and show that in fact stacking self-attention layers is so effective that it quickly saturates a capacity of the network width. Specifically, we pinpoint a "depth threshold" that is logarithmic in $d_x$, the network width: $L_{\textrm{th}}=\log_{3}(d_x)$. For networks of depth that is below the threshold, we establish a double-exponential depth-efficiency of the self-attention operation, while for depths over the threshold we show that depth-inefficiency kicks in. Our predictions strongly accord with extensive empirical ablations in Kaplan et al. (2020), accounting for the different behaviors in the two depth-(in)efficiency regimes. By identifying network width as a limiting factor, our analysis indicates that solutions for dramatically increasing the width can facilitate the next leap in self-attention expressivity.
Abstract:Artificial Neural Networks were recently shown to be an efficient representation of highly-entangled many-body quantum states. In practical applications, neural-network states inherit numerical schemes used in Variational Monte Carlo, most notably the use of Markov-Chain Monte-Carlo (MCMC) sampling to estimate quantum expectations. The local stochastic sampling in MCMC caps the potential advantages of neural networks in two ways: (i) Its intrinsic computational cost sets stringent practical limits on the width and depth of the networks, and therefore limits their expressive capacity; (ii) Its difficulty in generating precise and uncorrelated samples can result in estimations of observables that are very far from their true value. Inspired by the state-of-the-art generative models used in machine learning, we propose a specialized Neural Network architecture that supports efficient and exact sampling, completely circumventing the need for Markov Chain sampling. We demonstrate our approach for a two-dimensional interacting spin model, showcasing the ability to obtain accurate results on larger system sizes than those currently accessible to neural-network quantum states.