Abstract:A common practice in large language model (LLM) usage for complex analytical tasks such as code generation, is to sample a solution for the entire task within the model's context window. Previous works have shown that subtask decomposition within the model's context (chain of thought), is beneficial for solving such tasks. In this work, we point a limitation of LLMs' ability to perform several sub-tasks within the same context window - an in-context hardness of composition, pointing to an advantage for distributing a decomposed problem in a multi-agent system of LLMs. The hardness of composition is quantified by a generation complexity metric, i.e., the number of LLM generations required to sample at least one correct solution. We find a gap between the generation complexity of solving a compositional problem within the same context relative to distributing it among multiple agents, that increases exponentially with the solution's length. We prove our results theoretically and demonstrate them empirically.
Abstract:Language model alignment has become an important component of AI safety, allowing safe interactions between humans and language models, by enhancing desired behaviors and inhibiting undesired ones. It is often done by tuning the model or inserting preset aligning prompts. Recently, representation engineering, a method which alters the model's behavior via changing its representations post-training, was shown to be effective in aligning LLMs (Zou et al., 2023a). Representation engineering yields gains in alignment oriented tasks such as resistance to adversarial attacks and reduction of social biases, but was also shown to cause a decrease in the ability of the model to perform basic tasks. In this paper we study the tradeoff between the increase in alignment and decrease in helpfulness of the model. We propose a theoretical framework which provides bounds for these two quantities, and demonstrate their relevance empirically. Interestingly, we find that while the helpfulness generally decreases, it does so quadratically with the norm of the representation engineering vector, while the alignment increases linearly with it, indicating a regime in which it is efficient to use representation engineering. We validate our findings empirically, and chart the boundaries to the usefulness of representation engineering for alignment.