Abstract:While large language models exhibit certain cross-lingual generalization capabilities, they suffer from performance degradation (PD) on unseen closely-related languages (CRLs) and dialects relative to their high-resource language neighbour (HRLN). However, we currently lack a fundamental understanding of what kinds of linguistic distances contribute to PD, and to what extent. Furthermore, studies of cross-lingual generalization are confounded by unknown quantities of CRL language traces in the training data, and by the frequent lack of availability of evaluation data in lower-resource related languages and dialects. To address these issues, we model phonological, morphological, and lexical distance as Bayesian noise processes to synthesize artificial languages that are controllably distant from the HRLN. We analyse PD as a function of underlying noise parameters, offering insights on model robustness to isolated and composed linguistic phenomena, and the impact of task and HRL characteristics on PD. We calculate parameter posteriors on real CRL-HRLN pair data and show that they follow computed trends of artificial languages, demonstrating the viability of our noisers. Our framework offers a cheap solution to estimating task performance on an unseen CRL given HRLN performance using its posteriors, as well as for diagnosing observed PD on a CRL in terms of its linguistic distances from its HRLN, and opens doors to principled methods of mitigating performance degradation.
Abstract:While Transformer-based neural machine translation (NMT) is very effective in high-resource settings, many languages lack the necessary large parallel corpora to benefit from it. In the context of low-resource (LR) MT between two closely-related languages, a natural intuition is to seek benefits from structural "shortcuts", such as copying subwords from the source to the target, given that such language pairs often share a considerable number of identical words, cognates, and borrowings. We test Pointer-Generator Networks for this purpose for six language pairs over a variety of resource ranges, and find weak improvements for most settings. However, analysis shows that the model does not show greater improvements for closely-related vs. more distant language pairs, or for lower resource ranges, and that the models do not exhibit the expected usage of the mechanism for shared subwords. Our discussion of the reasons for this behaviour highlights several general challenges for LR NMT, such as modern tokenization strategies, noisy real-world conditions, and linguistic complexities. We call for better scrutiny of linguistically motivated improvements to NMT given the blackbox nature of Transformer models, as well as for a focus on the above problems in the field.
Abstract:Existing approaches for unsupervised bilingual lexicon induction (BLI) often depend on good quality static or contextual embeddings trained on large monolingual corpora for both languages. In reality, however, unsupervised BLI is most likely to be useful for dialects and languages that do not have abundant amounts of monolingual data. We introduce a simple and fast method for unsupervised BLI for low-resource languages with a related mid-to-high resource language, only requiring inference on the higher-resource language monolingual BERT. We work with two low-resource languages ($<5M$ monolingual tokens), Bhojpuri and Magahi, of the severely under-researched Indic dialect continuum, showing that state-of-the-art methods in the literature show near-zero performance in these settings, and that our simpler method gives much better results. We repeat our experiments on Marathi and Nepali, two higher-resource Indic languages, to compare approach performances by resource range. We release automatically created bilingual lexicons for the first time for five languages of the Indic dialect continuum.