Abstract:We extend the adaptive regression spline model by incorporating saturation, the natural requirement that a function extend as a constant outside a certain range. We fit saturating splines to data using a convex optimization problem over a space of measures, which we solve using an efficient algorithm based on the conditional gradient method. Unlike many existing approaches, our algorithm solves the original infinite-dimensional (for splines of degree at least two) optimization problem without pre-specified knot locations. We then adapt our algorithm to fit generalized additive models with saturating splines as coordinate functions and show that the saturation requirement allows our model to simultaneously perform feature selection and nonlinear function fitting. Finally, we briefly sketch how the method can be extended to higher order splines and to different requirements on the extension outside the data range.
Abstract:We present SDA-Bayes, a framework for (S)treaming, (D)istributed, (A)synchronous computation of a Bayesian posterior. The framework makes streaming updates to the estimated posterior according to a user-specified approximation batch primitive. We demonstrate the usefulness of our framework, with variational Bayes (VB) as the primitive, by fitting the latent Dirichlet allocation model to two large-scale document collections. We demonstrate the advantages of our algorithm over stochastic variational inference (SVI) by comparing the two after a single pass through a known amount of data---a case where SVI may be applied---and in the streaming setting, where SVI does not apply.