Abstract:We investigate the problem of teaching a robot manipulator to perform dynamic non-prehensile object transport, also known as the `robot waiter' task, from a limited set of real-world demonstrations. We propose an approach that combines batch reinforcement learning (RL) with model-predictive control (MPC) by pretraining an ensemble of value functions from demonstration data, and utilizing them online within an uncertainty-aware MPC scheme to ensure robustness to limited data coverage. Our approach is straightforward to integrate with off-the-shelf MPC frameworks and enables learning solely from task space demonstrations with sparsely labeled transitions, while leveraging MPC to ensure smooth joint space motions and constraint satisfaction. We validate the proposed approach through extensive simulated and real-world experiments on a Franka Panda robot performing the robot waiter task and demonstrate robust deployment of value functions learned from 50-100 demonstrations. Furthermore, our approach enables generalization to novel objects not seen during training and can improve upon suboptimal demonstrations. We believe that such a framework can reduce the burden of providing extensive demonstrations and facilitate rapid training of robot manipulators to perform non-prehensile manipulation tasks. Project videos and supplementary material can be found at: https://sites.google.com/view/cvmpc.
Abstract:Safely handling objects and avoiding slippage are fundamental challenges in robotic manipulation, yet traditional techniques often oversimplify the issue by treating slippage as a binary occurrence. Our research presents a framework that both identifies slip incidents and measures their severity. We introduce a set of features based on detailed vector field analysis of tactile deformation data captured by the GelSight Mini sensor. Two distinct machine learning models use these features: one focuses on slip detection, and the other evaluates the slip's severity, which is the slipping velocity of the object against the sensor surface. Our slip detection model achieves an average accuracy of 92%, and the slip severity estimation model exhibits a mean absolute error (MAE) of 0.6 cm/s for unseen objects. To demonstrate the synergistic approach of this framework, we employ both the models in a tactile feedback-guided vertical sliding task. Leveraging the high accuracy of slip detection, we utilize it as the foundational and corrective model and integrate the slip severity estimation into the feedback control loop to address slips without overcompensating.
Abstract:Current developments in autonomous off-road driving are steadily increasing performance through higher speeds and more challenging, unstructured environments. However, this operating regime subjects the vehicle to larger inertial effects, where consideration of higher-order states is necessary to avoid failures such as rollovers or excessive impact forces. Aggressive driving through Model Predictive Control (MPC) in these conditions requires dynamics models that accurately predict safety-critical information. This work aims to empirically quantify this aggressive operating regime and its effects on the performance of current models. We evaluate three dynamics models of varying complexity on two distinct off-road driving datasets: one simulated and the other real-world. By conditioning trajectory data on higher-order states, we show that model accuracy degrades with aggressiveness and simpler models degrade faster. These models are also validated across datasets, where accuracies over safety-critical states are reported and provide benchmarks for future work.